Genome-wide analysis of DNA methylation in samples from the Genotype-Tissue Expression (GTEx) project

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

Single Cell Open Research Endeavour (SCORE),

Walter and Eliza Hall Institute of Medical Research

Slides: www.bit.ly/AGTA2018

GTEx to eGTEx via a 'pilot' study

The Genotype-Tissue Expression (GTEx) project is an ongoing effort to build a comprehensive public resource to study [human] tissue-specific gene expression and regulation.

- GTEx Consortium, 2015, Science 348, 648-660

[eGTEx] extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues.

- eGTEx Project, 2017, Nat. Genet. 49, 1664-1670

Hmm, this eGTEx study is gonna be huge. And the human brain is hella cool. Let's do a pilot study.

- Artist's impression of conversation in Hansen and Feinberg labs, c. 2015

BrainEpigenome (the 'pilot' study)

Rizzardi, L. Hickey, P.F.*, et al.* Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric disease heritability.

bioRxiv (2017), doi:10.1101/120386 (in press, Nature Neuroscience)

UCSC Track Hub: www.bit.ly/BrainEpigenomeHub

Map of human brain methylome was limited (c. 2015)

GB-Seq

BS

DIP-Sec

RE-Seq

	Σ	Σ	R	3		
Brain				2		
Brain_Angular_Gyrus			1			
Brain_Anterior_Caudate			2			
Brain_Cingulate_Gyrus			1			
Brain_Germinal_Matrix		2		1		
Brain_Hippocampus_Middle				2		
Brain_Inferior_Temporal_Lobe			1			
Brain_Mid_Frontal_Lobe			1			
Brain_Substantia_Nigra			2			
Brain-Frontal Lobe-Left				1		
Brain-Frontal Lobe-Right				1		
Brain-Temporal lobe-Left				1		
Fetal_Brain	3	5	2			
Neurosphere_Cultured_Cells_Cortex_Derived				2		
Neurosphere_Cultured_Cells_Ganglionic_Eminence_Derived				2		
http://epigenomesportal.ca/ihec/grid.html (Build: 2017-10)						

- Little whole genome bisulfite sequencing (WGBS) data
- Few (if any) biological replicates
- Mostly bulk tissue samples
- Few brain region-specific differentially methylated regions (DMRs)^{1,2}

¹Davies, M. N. *et al.* Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. *Genome Biol.* **13**, R43 (2012).
²Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

A good map requires biological replicates, multiple brain regions, and multiple cell types

Tissue BRNCTXB (frontal cortex) BRNACC (anterior cingulate cortex) BRNHPP (hippocampus)

Donor

Bulk tissue samples are uninformative for brain region-specific mCG due to variation of neuronal proportion in sampled tissue

Let's try fluorescence activated nuclei sorting (FANS)

Tissue

BRNCTXB (frontal cortex) BRNACC (anterior cingulate cortex) BRNHPP (hippocampus)

Donor

And let's do some more assays

FANS & WGBS reveals brain region-specificity of mCG in NeuN+ (but not NeuN-) samples

NeuN+ samples: mCH shows limited strand specificity, 'tracks' mCG, and can be used to identify CH-DMRs

PC2 (8.0 %)

(NeuN+)

(NeuN+)

CG-DMRs and CH-DMRs co-occur CG-DMRs are enhancer-centric

(NeuN+)

(NeuN+)

OCR (union) H3K27ac FANTOM5 CH–DMRs (NeuN+) DEGs CG–DMRs (NeuN+) DEG promoters intronic Shelves exonic three utr Shores promoter ĊGI OpenSea SINE DNA Simple_repeat Low_complexity five_utr intergenic LTR LINE Satellite

CG-DMR (NeuN+)

(NeuN+)

CG-DMRs in NeuN+ samples are enriched for GWAS heritability of neuropsychiatric traits

Stratified linkage disequilibrium score regression^{*}

27 'brain-linked' traits (e.g., Schizophrenia, ADHD)

3 'non-brain-linked' traits (e.g., height)

*Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. (2015) doi: 10.1038/ng.3404

eGTEx (work in-progress)

eGTEx Project Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease.

Nature Genetics (2017), <u>doi: 10.1038/ng.3969</u>

eGTEX study design

Molecular phenotype	Primary assav(s)	Targeted tissues	Targeted sample	
		(phase II)	number	
DNA accessibility	DNase I hypersensitivity	Brain regions, heart, lung, muscle, esophagus, breast, prostate, skin	~1,135	
Histone modifications	ChIP-seq	Brain regions, heart, lung, muscle	~600	
DNA methylation	WGBS and capture bisulfite sequencing	Brain regions, heart, lung, muscle, thyroid	~2,000	
Allele-specific expression	mmPCR-seq	All tissues	~2,000	
Post-transcriptional RNA modifications	m ⁶ A methylation capture sequencing	Brain regions, heart, lung, muscle	~300	
Proteomic variation	MS, targeted arrays for transcription factors and cell signaling proteins	Brain, heart, lung, muscle, thyroid, colon, liver, prostate, pancreas, ovary, testis, breast	~1,000 (MS) ~2,500 (arrays)	
Somatic variation	Deep exome sequencing, RNA-seq, SNP arrays	~20–25 tissues	~800	
Telomere length	Luminex-based assay for telomere-repeat abundance	~20 tissues	~5,000	

Molecular assays, targeted tissues, and sample number for eGTEx.

eGTEx Project Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease.

Nature Genetics (2017), doi: 10.1038/ng.3969

Re-wrote *bsseq* to process and analyse eGTEx-sized (and bigger) datasets

- Processed data is too large to store and operate on in-memory (10s 100s of GB)
 - Data stored on-disk in HDF5 file
- Improved parallelization of key steps
 - Importing files
 - Smoothing
 - DMR calling
 - Permutation testing
- Available through Bioconductor
 - <u>https://bioconductor.org/packages/bsseq/</u>

mCG distinguishes eGTEx samples by tissue

eGTEx NeuN+ samples are (mostly) consistent with BrainEpigenome NeuN+ samples

eGTEx NeuN+ samples are (mostly) consistent with BrainEpigenome NeuN+ samples

eGTEx NeuN+ samples are (mostly) consistent with BrainEpigenome NeuN+ samples

5-group: 16x as many CG-DMRs in eGTEx NeuN+ samples as in BrainEpigenome NeuN+ samples

Basal ganglia: Discover 2x as many CG-DMRs in eGTEx NeuN+ samples as in BrainEpigenome NeuN+ samples

Hippocampus: What the hell is going on?

Ongoing eGTEx analyses

- Complete analyses of CG-DMRs
- Identify CH-DMRs and analyse
- Stratified linkage disequilibrium score regression
 - Do BrainEpigenome results replicate?
 - What can brain region-specific DMRs tell us?
- Variably methylated regions (VMRs)
- Allele-specific methylation using phased GTEx genomes
- Use sorted data to deconvolute bulk brain samples
- Integration with other GTEx and eGTEx data

Summary

- BrainEpigenome
 - FANS + WGBS reveals many brain region-specific CG-DMRs and CH-DMRs for NeuN+ (but not NeuN-) samples.
 - Neuronal CG-DMRs are enriched for heritability of several neurological, psychiatric, behavioral-cognitive phenotypes.
- eGTEx
 - More tissues + more replicates = huge increase in DMRs.
- The scale of these projects necessitated extensive improvements to computational methods and software engineering.
- There will still be **heaps of analyses on the table** after publication of initial eGTEx publication(s).
 - Get involved!

Acknowledgements

Dr. Lindsay Rizzardi

Prof. Andy Feinberg

Sequencing gurus: Rakel Tryggvadóttir, Adrian Idrizi, Colin Callahan **ATAC-seq experiments**: Varenka Rodriguez DiBlasi **Flow sorting**: Hao Zhang and Hopkins Flow Facility Funding: eGTEx (U01MH104393), CFAR (5P30AI094189-04, 1S10OD016315-01, and 1S10RR13777001), AGTA Travel Award **Donors and families:** NIH NeuroBioBank at the University of Maryland & University of Pittsburgh

Links

Papers

Rizzardi, L. Hickey, P.F.*, et al.* **Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric disease heritability**. *bioRxiv* (2017), <u>doi:10.1101/120386</u> (in press, Nature Neuroscience)

eGTEx Project Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nature Genetics (2017), doi: 10.1038/ng.3969

Genome Browser

www.bit.ly/BrainEpigenomeHub

Slides

www.bit.ly/AGTA2018

Software

http://bioconductor.org/packages/bsseq/

Bonus slides

eGTEx capture bisulfite-sequencing study

- Aim: Study genetic influence on DNA methylation in human brain
- Assay: Targeting 46 Mb (1 million CpGs) with Roche NimbleGen capture
 - 55% of CpGs not captured by microarrays or other targeted panels
 - CG-DMRs
 - Neuronal (BrainEpigenome and eGTEx)
 - NeuN+ vs. NeuN- (BrainEpigenome)
 - GABAergic vs. glutamatergic¹
 - CG-VMRs (eGTEx)
 - Haplotype-dependent allele-specific DMRs and meQTLs²
 - Fetal brain meQTLs³
 - 'Epigenetic age' CpGs⁴

• Samples: > 100 donors (BRNCTXB, BRNCDT, BRNNCC, BRNHPP, and THYROID)

¹Dracheva et al., *unpublished*

²Do, C. *et al.* Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation. *Am. J. Hum. Genet.* (2016) ³Court, F. *et al.* Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. *Genome Res.* (2014)

⁴Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol.* (2013)

GTEx -> eGTEx

¹GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. *Science* **348**, 648–660 (2015).

²<u>https://gtexportal.org/home/tissueSummaryPage</u>

³eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. *Nat. Genet.* **49**, 1664–1670 (2017).