
DelayedArray:	a	tibble for	arrays
Peter	Hickey
@PeteHaitch

Department	of	Biostatistics,	Johns	Hopkins	Bloomberg	School	of	Public	Health
Walter	and	Eliza	Hall	Institute	of	Medical	Research

Slides:	www.bit.ly/useR2018

Why	I’m	here
Most	of	what	I’m	presenting	is	the	work	of	Hervé Pagès (@hpages)

CODE

I	am	an	early	adopter	of	the	DelayedArray framework,	using	it	to	analyse	large	
datasets	at	the	cutting	edge	of	high-throughput	biology

I	am	a	developer	of	packages	that	use	and	extend	the	DelayedArray framework

Why	I’m	here
Most	of	what	I’m	presenting	is	the	work	of	Hervé Pagès (@hpages)

CODE

I’m	an	early	adopter	of	the	DelayedArray framework,	using	it	to	analyse	large	datasets	
at	the	cutting	edge	of	high-throughput	biology.

I’m	a	developer	of	packages	(bsseq,	minfi,	DelayedMatrixStats)	that	use	and	extend	
the	DelayedArray framework.

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

SummarizedExperiment
A	core	Bioconductor	data	structure	used	to	store	
rectangular	matrices	of	experimental	results

Assay	data	(the	measurements)
What	I’ll	be	talking	about	today
Typically,	an	ordinary	R	array

Why	ordinary	R	arrays?

üStructured	(but	not	tidy™)
üFamiliar	base	R	API
üPowerful	matrixStats API
üMatrix	algebra	and	BLAS/LAPACK-ready
üC/C++-ready
üConducive	to	interactive	data	analysis

But	data	are	getting	too	big	for	ordinary	R	arrays

• TENxBrainData
• Single-cell	RNA-seq data	for	1.3	million	brain	cells	from	mice
• 1	matrix
• 27,998 genes	(rows)
• 1,306,127	samples	(columns)
• 146	GB	as	an	ordinary	array

• GTEx DNA	methylation	data
• Whole	genome	bisulfite-sequencing	(CpG and	non-CpG)
• 3	matrices
• 31,000,000	– 222,000,000	loci	(rows)
• 183	samples	(columns)
• 91	– 650	GB	as	ordinary	arrays

DelayedArray to	the	rescue!
• TENxBrainData

• SummarizedExperiment is	184	Mb	in	memory	(most	of	that	the	colData)

• GTEx DNA	methylation	data
• SummarizedExperiment is	235	Mb	in	memory	(most	of	that	the	rowRanges)

• How	is	this	done?
• Assay	data	live	on	disk	in	an	HDF5	file	that	is	wrapped	in	a	DelayedArray

• Assay	data	still	“look”	and	“feel”	like	an	ordinary	R	array
üStructured	(but	not	tidy™)
üFamiliar	base	R	API
üPowerful	matrixStats API	(via	DelayedMatrixStats)
üMatrix	algebra	and	BLAS/LAPACK-ready	(via	block-processing)
üC/C++-ready	(via	beachmat)
üConducive	to	interactive	data	analysis

But	what	exactly	is	“DelayedArray”?

• DelayedArray refers	to	a	class,	a	package,	and	an	extensible	
framework
• Available	as	part	of	Bioconductor
• Developed	by	Hervé Pagès,	member	of	Bioconductor	Core	Team
• Developed	using	S4	object	oriented	system	(like	most	of	
Bioconductor)

install.packages(”BiocManager")
BiocManager::install(”DelayedArray")

DelayedArray has	analogies	to	tibble and	dplyr
DelayedArray DESCRIPTION
“Wrapping	an	array-like	object	
(typically	an	on-disk	object)	in	a	
DelayedArray object	allows	one	to	
perform	common	array	operations	
on	it	without	loading	the	object	in	
memory.	
In	order	to	reduce	memory	usage	
and	optimize	performance,	
operations	on	the	object	are	either	
delayed	or	executed	using	a	block	
processing	mechanism.”	
“Note	that	this	also	works	on	in-
memory	array-like	objects	like	
DataFrame objects	(typically	with	
Rle columns),	Matrix objects,	and	
ordinary	arrays	and	data	frames.”

tibble and	dplyr READMEs
“A	tibble,	or tbl_df,	is	a	modern	
reimagining	of	the	data.frame,	
keeping	what	time	has	proven	to	be	
effective,	and	throwing	out	what	is	
not.	Tibbles	are	data.frames that	are	
lazy	and	surly.”
“dplyr is	designed	to	abstract	over	
how	the	data	is	stored.	That	means	
as	well	as	working	with	local	data	
frames,	you	can	also	work	with	
remote	database	tables,	using	
exactly	the	same	R	code.”

Why	DelayedArray?	Why	not	rhdf5,	hdf5r,	matter,	ff,	
bigmemory,	fst,	a	database,	...?

• You	can	still	use	these!	
• Create	new	DelayedArray “backends”

• The	DelayedArray framework	is	a	powerful	abstraction
• DelayedArray is	developed	by	the	Bioconductor	core	team
• Strong	integration	with	core	Bioconductor	infrastructure

Seeds	and	backends

• Every	DelayedArraymust	have	a	seed.
• The	seed stores	the	actual	data.
• Can	be	in-memory,	locally	on-disk,	or	remotely	served.
• The	“seed	contract”:	dim(),	dimnames(),	extract_array().

Seeds	and	backends
library(DelayedArray)
mat	<-matrix(rep(1:20,	1:20),	ncol = 2)
da_mat <- DelayedArray(seed	= mat)	
da_mat
#>	<105	x	2>	DelayedMatrix object	of	type	"integer":
#>														[,1]		[,2]
#>						[1,]	 1				15
#>						[2,]	 2				15
#>						[3,]	 2				15
#>						[4,]	 3				15
#>						[5,]	 3				15
#>
#>	[101,]	 14				20
#>	[102,]	 14				20
#>	[103,]	 14				20
#>	[104,]	 14				20
#>	[105,]	 14				20

#	We	can	use	in-memory	seeds.
DelayedArray(seed	= Matrix::Matrix(mat))
DelayedArray(seed	= as.data.frame(mat))
DelayedArray(seed	= tibble::as_tibble(mat))
DelayedArray(seed	= S4Vectors::DataFrame(mat))
#	A	slightly	more	complex	in-memory	seed.
RleArray(rle = S4Vectors::Rle(mat),	dim	= dim(mat))

#	We	can	use	on-disk	seeds.
library(HDF5Array)
rhdf5::h5ls(hdf5_file)
#>				group														name																		otype dclass dim
#>	0									/								hdf5_mat			H5I_DATASET		INTEGER	105	x	2
HDF5Array(filepath = hdf5_file,	name	= "hdf5_mat")

#	We	can	use	remotely	served	seeds.
library(rhdf5client)
H5S_Array(filepath =	“http://host.org",	host	= hdf5_file)

Seeds	and	backends

• Every	DelayedArraymust	have	a	seed.
• The	seed stores	the	actual	data.
• Can	be	in-memory,	locally	on-disk,	or	remotely	served.
• The	“seed	contract”:	dim(),	dimnames(),	extract_array().

• A	seed	is	closely	related	to	and	tied	to	a	backend.
• RleArray
• HDF5Array
• rhdf5client

• What	backend	should	I	use?
• Right	now,	if	you	need	on-disk	data	then	I’d	recommend	HDF5Array.

#	x_h5	is	a	DelayedArray
with	an	HDF5	seed.
dim(x_h5)	
#>	[1]	6	2	90354753
#	Delayed	operations	are	
fast!
system.time(x_h5	+	1L)	
#>	user	system	elapsed	
#>	0.005	0.000	0.005
x	<- as.array(x_h5)	
system.time(x	+	1L)	
#>	user	system	elapsed	
#>	4.872	1.761	6.931

showtree(x_h5)	#	showtree()	is	kind	of	like	str()

#>	6x2x90354753	integer:	HDF5Array	object

#>	└─	6x2x90354753	integer:	[seed]	HDF5ArraySeed	object

Delayed	operations

showtree(x_h5[1:2,	,])	
#>	2x2x90354753	integer:	DelayedArray object
#>	└─	2x2x90354753	integer:	Subset
#>						└─	6x2x90354753	integer:	[seed]	HDF5ArraySeed	object
showtree(t(x_h5[1,	,]))	
#>	90354753x2	integer:	DelayedMatrix object
#>	└─	90354753x2	integer:	Aperm (perm=c(3,2))
#>						└─	1x2x90354753	integer:	Subset
#>											└─	6x2x90354753	integer:	[seed]	HDF5ArraySeed	object

#	They're	fast	because	they	don't	yet	compute	anything.
showtree(x_h5	+	1L)	
#>	6x2x90354753	integer:	DelayedArray object
#>	└─	6x2x90354753	integer:	Unary	iso op
#>						└─	6x2x90354753	integer:	[seed]	HDF5ArraySeed	object

Realization
#	Realize	the	result	to	an	autogenerated HDF5	file,	return	as	a	DelayedArray.
y_h5	<- realize(x_h5	+	1L,	BACKEND	=	"HDF5Array")	
#	path()	tells	you	the	location	of	the	HDF5	seed
path(seed(x_h5))
#>	[1]	
"/Library/Frameworks/R.framework/Versions/3.5/Resources/library/h5vcData/extd
ata/example.tally.hfs5"
path(seed(y_h5))
#>	[1]	
"/private/var/folders/f1/6pjy5xbn0_9_7xwq6l7fj2yc0000gn/T/RtmpRC1xlB/HDF5Ar
ray_dump/auto00001.h5"
#	Realize	the	result	in	memory	as	an	array,	return	as	a	DelayedArray.
y	<- realize(x_h5	+	1L,	BACKEND	=	NULL)

Block-processing

Problem:	I	need	to	traverse	the	array	and	
performing	some	operation(s)	but	can	
only	load	n	elements	into	memory.	
The	operation(s)	could	be	element-wise	
or	block-wise.
Side	note:	at	the	heart	of	realization.
Side	note:	n is	controlled	by	
getOption("DelayedArray.block.size")

Each	block	is	a	row

E.g.,	rowSums()

RegularArrayGrid(
refdim = dim(x),
spacings = c(1L, ncol(x)))

Each	block	is	a	column

E.g.,	colSums()

RegularArrayGrid(
refdim = dim(x),
spacings = c(nrow(x), 1L))

Each	block	is	a	fixed	number	of	columns

E.g.,	colSums().	More	efficient	if	you	can	
load	>	1	columns’	worth	of	data	into	memory.

RegularArrayGrid(
refdim = dim(x),
spacings = c(nrow(x), 5L))

Each	block	is	a	variable	number	of	columns

E.g.,	rowsum()

ArbitraryArrayGrid(
tickmarks = list(
nrow(x),
c(4L, 7L, 9L, 10L)))

Each	block	is	the	matrix

You	probably	don’t	want	to	do	this!

RegularArrayGrid(
refdim = dim(x),
spacings = c(nrow(x), ncol(x))

Each	block	is	“optimal”

E.g.,	when	the	data	are	chunked	on	disk	in	an	
HDF5	file.

blockGrid(
x = x,
block.shape = “hypercube”)

block.shape can	be	one	of:	
• “hypercube”
• “scale”
• “first-dim-grows-first”
• “last-dim-grows-first”

Block-processing	pseudocode

grid <- blockGrid(x)
for (b in seq_along(grid)) {
viewport <- grid[[b]]
block <- read_block(x, viewport)
FUN(block)

}

Block-processing	pseudocode
library(BiocParallel)
grid <- blockGrid(x)
bplapply(seq_along(grid), function(b) {
viewport <- grid[[b]]
block <- read_block(x, viewport)
FUN(block)

})

DelayedArray::blockApply(

x,

FUN,

...,

grid=NULL,

BPREDO=list(),

BPPARAM=bpparam())

Block-processing	in	practice
DelayedArray::blockReduce(

FUN,

x,

init,

BREAKIF=NULL,

grid=NULL)

• These	can	be	used	to	implement	most	block-processing	algorithms.
• Abstractions	for	some	problems	still	being	worked	out.	E.g.,

• Iterating	over	multiple	DelayedArray instances.
• What	to	do	when	FUN() returns	an	equally	large	(or	larger)	object?

• Can	also	write	to	a	block	with	DelayedArray::write_block()
.

DelayedMatrixStats

• The	one	slide	of	this	talk	about	something	I	done	made
• A	port	of	the	matrixStats API	for	use	with	DelayedMatrix objects
• Complete	coverage	of	matrixStats API	(74	methods)	via	block-processing
• Continual	development	on	seed-aware,	optimized	methods

beachmat

• Developed	by	Aaron	Lun with	Hervé Pagès and	Mike	Smith.
• Provides	a	consistent	C++	class	interface	for	a	variety	of	commonly	
used	matrix	types,	including	sparse	and	HDF5-backed	matrices.
• Uses	Rcpp with	SystemRequirements: C++11
• Extracting	data
• get_row()and	get	back	a	Rcpp::Vector::iterator
• get_col() and	get	back	a	Rcpp::Vector::iterator
• get() and	get	back	a	integer/double	value

• Writing	data
• set_row()
• set_col()
• set()

Summary

• DelayedArray is	to	an	array as	a	tibble is	to	a	data.frame.
• A	powerful	abstraction	for	array-like	data	that	may	be	in-memory,	
locally	stored	on-disk,	or	remotely	served.
• The	DelayedArray framework	may	be	used	directly	or	extended.
• Combined	with	an	on-disk	backend	(e.g.,	HDF5),	the	DelayedArray
framework	is	enabling	the	analysis	of	large	genomics	data	sets.

Acknowledgements

• Hervé Pagès (DelayedArray,	HDF5Array,	the	DelayedArray framework)
• Mike	Smith,	Bernd	Fischer,	Gregoire Pau,	Martin	Morgan,	Daniel	van	Twisk
(rhdf5)
• Aaron	Lun,	Hervé Pagès,	Mike	Smith	(beachmat)
• Samuela Pollack,	Shweta	Gopaulakrishnan,	Vince	Carey	(rhdf5client)
• Qian	Liu,	Martin	Morgan,	Hervé Pagès (GDSArray)
• Mike	Jiang	(fellow	canary	down	the	coal	mine,	backend	hacker)
• Martin	Morgan	(Bioconductor	Project	Lead)
• Kasper	Hansen	(creator	of	bsseq and	minfi,	postdoc	advisor,	and	tolerator
of	scenic	detours	and	occasional	car	crashes)

Links
Papers

Neuronal	brain	region-specific	DNA	methylation	and	chromatin	accessibility	are	associated	
with	neuropsychiatric	disease	heritability	Rizzardi*,	Hickey*,	et	al.:
https://doi.org/10.1101/120386
beachmat:	https://doi.org/10.1371/journal.pcbi.1006135

Workshop:	https://bioconductor.github.io/BiocWorkshops/
Presenting	at	BioC2018	in	Toronto	on	July	25
Material	available	in	1-2	weeks	(well,	it	had	better	be	…)

Slides:	www.bit.ly/useR2018

@PeteHaitch

install.packages(”BiocManager")
BiocManager::install(”DelayedArray")

