Making sense of DNA methylation data

Peter Hickey @PeteHaitch 15 September 2014

How I spend my time

"Oh, you're a statistician..."

How I've spent my time since 13 January, 2014

How I spend my time

http://gifurl.com/gifs/1145

How I spend my time

http://wifflegif.com/gifs/511132-richard-ayoade-the-it-crowd-gif

Project aim

How to analyse whole-genome bisulfite-sequencing experiments to learn about DNA methylation?

Exploratory data analyses

https://www.flickr.com/photos/theloushe/4640871734

http://tstoaddicts.files.wordpress.com/2013/08/simpsons-questions.gif

Collaboration

http://cdn.amazinganimalstories.com/wp-content/uploads/2013/11/ATT00038.jpg

5mCs and one assay

ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC

ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC

m m m m ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC m m m m

"Cytosine becomes thymine" by CFCF - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Cytosine_becomes_thymine.png#mediaviewer/File:Cytosine_becomes_thymine.png

"Cytosine becomes thymine" by CFCF - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Cytosine_becomes_thymine.png#mediaviewer/File:Cytosine_becomes_thymine.png

ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC

m m m m ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC m m m m

http://www.ous-research.no/kristensen/images/projects/Promoter_methylation.jpg

Cancer Genome Atlas Research Network. "Integrated genomic analyses of ovarian carcinoma." Nature 474.7353 (2011): 609-615.

Cancer Genome Atlas Research Network. "Integrated genomic analyses of ovarian carcinoma." Nature 474.7353 (2011): 609-615.

http://commons.wikimedia.org/wiki/File:Calico_cat_-Phoebe.jpg#mediaviewer/File:Calico_cat_-_Phoebe.jpg

Cancer Genome Atlas Research Network. "Integrated genomic analyses of ovarian carcinoma." Nature 474.7353 (2011): 609-615.

http://commons.wikimedia.org/wiki/File:Calico_cat_ Phoebe.jpg#mediaviewer/File:Calico_cat_-_Phoebe.jpg

http://commons.wikimedia.org/wiki/File%3ABlastocyst_embryo.png

m m ACGCGAAACGTTCTATCGG TGCGCTTTGCAAGATAGCC

m m m m ACGCGAAACGTTCTATCGG

ACGCGAAACGTTCTATCGG

ACGCGAAACGTTCTATCGG + PCR amplification

ACGCGAAACGTTCTATCGG **PCR** amplification ACGCGAAACGTTCTATCGG

ACGCGAAACGTTCTATCGG

ACGCGAAACGTTCTATCGG + Sodium bisulfite

ACGCGAAACGTTCTATCGG Sodium bisulfite ACGUGAAACGTTCTATCGG

ACGUGAAACGTTCTATCGG

ACGUGAAACGTTCTATCGG + PCR amplification

ACGUGAAACGTTCTATCGG **PCR** amplification ACGTGAAACGTTCTATCGG

ACGUGAAACGTTCTATCGG PCR amplification ACGTGAAACGTTCTATCGG
Bisulfite treatment of DNA

Whole-genome bisulfite-sequencing

ACGCGAAACGTTCTATCG

ACGCGAAACGTTCTATCG

$\bullet \bullet \bullet \circ$

$$\beta_1 = 3/3$$

$$\beta_2 = 4/4$$

$$\beta_3 = 2/4$$

$$\beta_4 = 0/4$$

Lister data

	ADS	ADS-adipose	ADS-iPSC
Organism	Human (female)	Human (female)	Human (female)
Cell type	Somatic	Somatic	Induced pluripotent stem cell (iPSC)
Description	Adipose	Adipocytes derived from <i>ADS</i>	iPSC line derived from ADS
Sequencing	75 bp paired-end	75 bp paired-end	75 bp paired-end
Average coverage	23×	24×	26×

Lister, Ryan, et al. "Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells." Nature 471.7336 (2011): 68-73.

Co-methylation

Co-methylation = co-occurence

"The presence of methylation over a stretch of neighboring CpG positions"

Schatz, Philipp, Dimo Dietrich, and Matthias Schuster. "Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF." Nucleic acids research 32.21 (2004): e167-e167.

Co-methylation = co-occurence

"The presence of methylation over a stretch of neighboring CpG positions"

Schatz, Philipp, Dimo Dietrich, and Matthias Schuster. "Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF." Nucleic acids research 32.21 (2004): e167-e167.

Co-methylation = co-occurence

"The presence of methylation over a stretch of neighboring CpG positions"

Schatz, Philipp, Dimo Dietrich, and Matthias Schuster. "Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF." Nucleic acids research 32.21 (2004): e167-e167.

"The relationship between the degree of methylation over distance"

"The relationship between the degree of methylation over distance"

"The relationship between the degree of methylation over distance"

- 1. Within-fragment co-methylation
 - 2. Correlation of β -values

Eckhardt, Florian, et al. "DNA methylation profiling of human chromosomes 6, 20 and 22." Nature genetics 38.12 (2006): 1378-1385.

"The relationship between the degree of methylation over distance"

1. Within-fragment co-methylation

2. Correlation of β -values

Eckhardt, Florian, et al. "DNA methylation profiling of human chromosomes 6, 20 and 22." Nature genetics 38.12 (2006): 1378-1385.

Do this 50 million times per sample

chr	strand	pos1	pos2	MM	MU	UM	UU
chr1	+	469	471	0	5	1	0
chr1	+	471	484	1	0	4	1
chr1	+	484	489	3	2	1	0
chr1	+	489	493	4	2	1	1
chr1	+	493	497	4	1	3	0
chr1	+	497	525	6	0	1	0
chr1	+	525	542	4	0	0	0
chr1	+	525	563	1	0	0	0
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •

Do this 50 million times per sample

www.github.com/PeteHaitch/methtuple

Co-methylation = correlation

"The relationship between the degree of methylation over distance"

1. Within-fragment co-methylation

2. Correlation of β -values

Eckhardt, Florian, et al. "DNA methylation profiling of human chromosomes 6, 20 and 22." Nature genetics 38.12 (2006): 1378-1385.

ADS: Distance = 10 bp Correlation = 0.95

ADS: Distance = 100 bp Correlation = 0.55

ADS: Correlation of β -values

Some of these mice are not like the others (we hope...)

Methylome of the agouti viable yellow mouse (A^{vy})

Morgan, Hugh D., et al. "Epigenetic inheritance at the agouti locus in the mouse." Nature genetics 23.3 (1999): 314-318.

Experimental design

C57BL/6

Experimental design

"Liver (transparent)" by Mikael Häggström - File:Human Hepar.jpg. Licensed under Public domain via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:Liver_(transparent).png#mediaviewer/File:Liver_(transparent).png

Experimental design

30× whole-genome bisulfite-sequencing

+

30× whole-genome bisulfite-sequencing

+

\$\$\$

30× whole-genome bisulfite-sequencing

+

epialleles

Method

- 1. Some of these mice are not like the others?
- 2. Is my neighbour also different?
- 3. Is my neighbour different in the same way as me?

Some of these mice are not like the others?

	Mouse1	Mouse2	Mouse3	Mouse4	Mouse5			
Methylated	17	31	15	23	9			
Unmethylated	1	3	0	1	1			
P-value = 0.76								

Some of these mice are not like the others?

	Mouse1	Mouse2	Mouse3	Mouse4	Mouse5		
Methylated	38	79	59	69	44		
Unmethylated	1	2	1	2	46		
P-value = 2×10^{-25}							

Some of these mice are not like the others?

	Mouse1	Mouse2	Mouse3	Mouse4	Mouse5
Methylated	38	79	59	69	44
Unmethylated	1	2	1	2	46
	_		4 a 25		

P-value = 2×10^{-25}

P-value < *threshold* → (candidate) differentially methylated CpG (**DMC**)

Is my neighbour also different?

"Run-DMC Logo" Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/ wiki/File:Run-DMC_Logo.svg#mediaviewer/File:Run-DMC_Logo.svg

Is my neighbour also different?

- 1. Find runs of CpGs
 - P-value < threshold</p>
 - Within *distance* of next CpG
 - Some allowance for missing or "insignificant" CpGs
- 2. Filter candidate runs
 - Run contains enough CpGs

Is my neighbour different in the same way as me?

An inconsistent candidate region

Is my neighbour different in the same way as me?

- Flag regions with 3-way interaction between sample × methylation level × position
 - Not quite what we want
 - So plot, plot, plot

How I work, what I found, and what I'm proud of

Summary

"Doesn't the gardener lavish more care on the thorns than on the flowers"

- Hartman in Metamorphisis by S.Y. Agnon Via @erichlya

"Agnon" of Unknown - The David B. Keidan Collection of Digital Images from the Central Zionist Archives (via Harvard University Library). Licensed under the Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Agnon.jpg#mediaviewer/File:Agnon.jpg

"You can observe a lot by watching"

- Yogi Berra

"Yogi Berra 1956" by unknown - Baseball Digest, front cover, September 1956 issue. [1]. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Yogi_Berra_1956.png#mediaviewer/File:Yogi_Berra_1956.png

http://4.bp.blogspot.com/-N-caq8YoBaQ/UpPZs5EChnI/AAAAAAABIw/Pb8g7jjJJGA/s1600/Stop+Collaborate.jpg

http://4.bp.blogspot.com/-N-caq8YoBaQ/UpPZs5EChnI/AAAAAAABIw/Pb8g7jjJJGA/s1600/Stop+Collaborate.jpg

What I found

Estimated strong spatial dependence of DNA methylation

What I found

- Estimated strong spatial dependence of DNA methylation
- Cell-type differences in dependence structure

What I found

- Estimated strong spatial dependence of DNA methylation
- Cell-type differences in dependence structure
- Evidence of higher order chromatin structure in spatial dependence data

What I'm proud of

www.github.com/PeteHaitch

Terry Speed

Peter Hall

Data

- Ryan Lister et al. (UWA, Salk Institute)
- Sue Clark, Aaron Statham (Garvan Institute)
- Emma Whitelaw, Harry Oey (La Trobe)
- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Everyone who makes their data publicly available

Data

- Ryan Lister et al. (UWA, Salk Institute)
- Sue Clark, Aaron Statham (Garvan Institute)
- Emma Whitelaw, Harry Oey (La Trobe)
- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Everyone who makes their data publicly available

Methodology & technology

- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Felix Krueger (Babraham Institute)
- Toby Sargeant (WEHI)
- Keith Satterley (WEHI)
- Bioconductor developers
- WEHI Bioinformatics
- Everyone who makes their software open source

Data

- Ryan Lister et al. (UWA, Salk Institute)
- Sue Clark, Aaron Statham (Garvan Institute)
- Emma Whitelaw, Harry Oey (La Trobe)
- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Everyone who makes their data publicly available

Methodology & technology

- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Felix Krueger (Babraham Institute)
- Toby Sargeant (WEHI)
- Keith Satterley (WEHI)
- Bioconductor developers
- WEHI Bioinformatics
- Everyone who makes their software open source

Funding: APA and VLSCI

Data

- Ryan Lister et al. (UWA, Salk Institute)
- Sue Clark, Aaron Statham (Garvan Institute)
- Emma Whitelaw, Harry Oey (La Trobe)
- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Everyone who makes their data publicly available

Methodology & technology

- Kasper Hansen, Rafael Irizarry (Johns Hopkins, Harvard)
- Felix Krueger (Babraham Institute)
- Toby Sargeant (WEHI)
- Keith Satterley (WEHI)
- Bioconductor developers
- WEHI Bioinformatics
- Everyone who makes their software open source

Funding: APA and VLSCI

Sanity: Family and friends

http://s18.photobucket.com/user/endriquelimones/media/tensographics_math.jpg.html

www.peterhickey.org/presentations