ACGCGAAACGTTCTATCG

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 1 / 14

ACGCGAAACGTTCTATCG

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 1 / 14

CH₃CH₃ CH₃ I³ I³ I³ ACGCGAAACGTTCTATCG

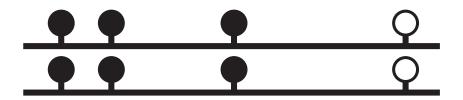
Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 1 / 14

CH₃CH₃ CH₃ I³ I³ I³ ACGCGAAACGTTCTATCG

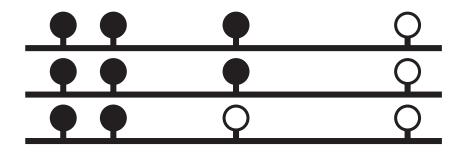
Peter Hickey (@PeteHaitch)


Simulating DNA methylation data

10 July 2014 1 / 14

10 July 2014 2 / 14

イロト イポト イヨト イヨト

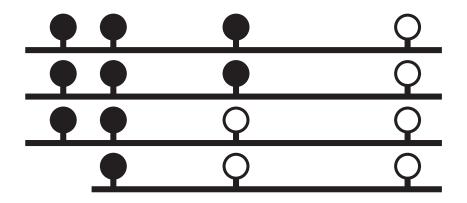


Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

▶ ◀ 볼 ▶ 볼 ∽ ೩ 여 10 July 2014 2 / 14

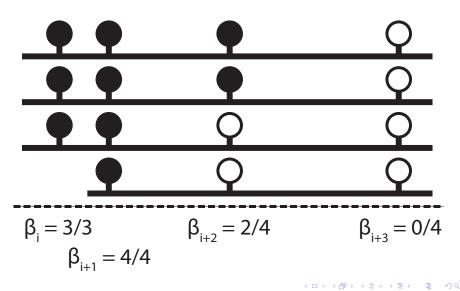
A D N A B N A B N A B N



Peter Hickey (@PeteHaitch)

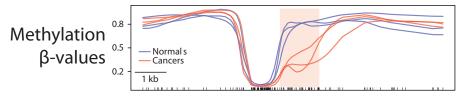
Simulating DNA methylation data

■ ◆ ■ ◆ ■ ◆ つへで 10 July 2014 2 / 14


A D N A B N A B N A B N

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

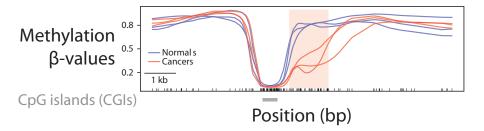

A D N A B N A B N A B N

Simulating DNA methylation data

10 July 2014 2 / 14

Differentially methylated regions $(DMRs)^1$

Position (bp)


 $^{-1}$ Hansen, K. D. et al. Nat Genet 43, 768–775 (2011) \prec \Box

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 3 / 14

Differentially methylated regions $(DMRs)^1$

 $^{-1}$ Hansen, K. D. et al. Nat Genet 43, 768–775 (2011) \prec \Box

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 3 / 14

Why I care about simulating DNA methylation data

Methods development and validation

- Do methods designed to find DMRs actually work?
- What method reigns supreme?

Why I care about simulating DNA methylation data

Methods development and validation

- Do methods designed to find DMRs actually work?
- What method reigns supreme?

How to decide?

• No "gold standard" data \Rightarrow simulate

.

Why I care about simulating DNA methylation data

Methods development and validation

- Do methods designed to find DMRs actually work?
- What method reigns supreme?

How to decide?

- No "gold standard" data \Rightarrow simulate
- No simulation software \Rightarrow l'm writing methsim.

.

Simulate β -values

• Simulate independent $\beta_i \stackrel{d}{=} Beta(\mu_i, \nu_i) + induce$ correlation via variogram model.

- Simulate independent $\beta_i \stackrel{d}{=} Beta(\mu_i, \nu_i) + induce$ correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β -values are summarised measurements.

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β-values are summarised measurements.
 Correlations of β-values are spurious.

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β-values are summarised measurements.
 Correlations of β-values are spurious.

Simulate β -values

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β-values are summarised measurements.
 Correlations of β-values are spurious.

Simulate individual methylation events

• Higher resolution.

Simulate β -values

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β-values are summarised measurements.
 Correlations of β-values are spurious.

Simulate individual methylation events

- Higher resolution.
- Contains the mechanistic dependence structure.

Simulate β -values

- Simulate independent β_i = Beta(μ_i, ν_i) + induce correlation via variogram model.
- Re-sample real data in a way that tries to preserve correlation structure.
- β-values are summarised measurements.
 Correlations of β-values are spurious.

Simulate individual methylation events

- Higher resolution.
- Contains the mechanistic dependence structure.
 Difficult given current data.

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

My solution

methsim: An R package for simulating whole genome DNA methylation data.

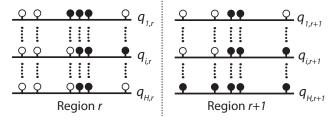
- Parameter distributions estimated from input data.
- Parts written in C++ (via Rcpp).
- Results today from a preliminary version of methsim.

My solution

methsim: An R package for simulating whole genome DNA methylation data.

- Parameter distributions estimated from input data.
- Parts written in C++ (via Rcpp).
- Results today from a preliminary version of methsim.

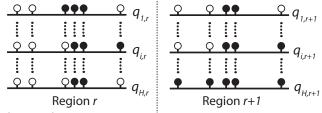
Outline of methsim


- Segment genome into "region of similarity" (MethylSeekR¹)
- Simulate "meta-haplotypes" within each region using Markov model.
- Simulate sequencing of reads.

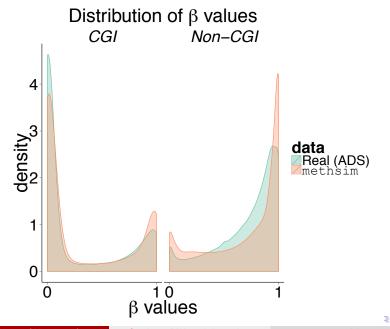
^aBurger, L., Gaidatzis, D., Schübeler, D. & Stadler, M. B. Nucleic Acids Res (2013). doi:10.1093/nar/gkt599

Simulating *meta-haplotypes*

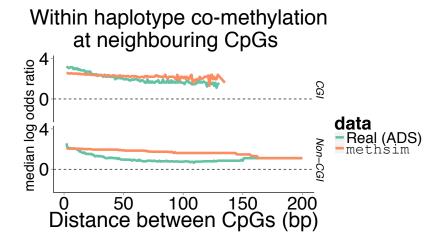
- (2) For each region:
 - Simulate each meta-haplotype using a Markov model Transition matrices depend on distance between CGs and the type of region


Assign haplotype *i* in region *r* frequency q_{ir}

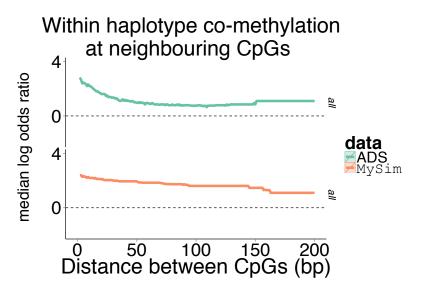
Simulating *meta-haplotypes*


- (2) For each region:
 - Simulate each meta-haplotype using a Markov model Transition matrices depend on distance between CGs and the type of region

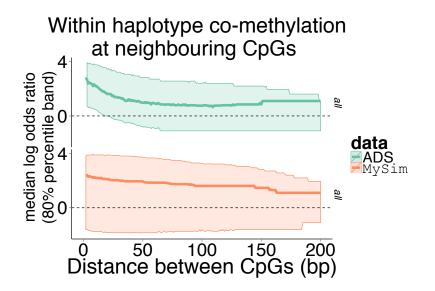
Assign haplotype *i* in region *r* frequency q_{ir}

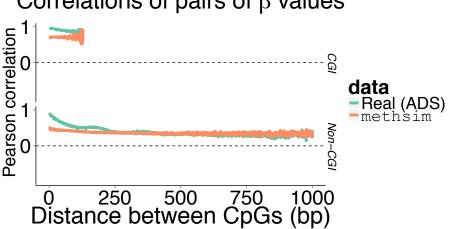

(3) Simulate read positions Simulate reads for region *r* by sampling from *i*th haplotype with probability *q*_{*ir*} Simulate sequencing error

10 July 2014 7 / 14



Simulating DNA methylation data


10 July 2014 8 / 14


10 July 2014 9 / 14

10 July 2014 10 / 14

10 July 2014 10 / 14



Correlations of pairs of β values

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 11 / 14

• methsim models the mechanistic dependence structure of DNA methylation data.

10 July 2014 12 / 14

- B - - B

Summary

- methsim models the mechanistic dependence structure of DNA methylation data.
- Will be using methsim to simulate data with inserted DMRs and compare DMR-detection methods.

Summary

- methsim models the mechanistic dependence structure of DNA methylation data.
- Will be using methsim to simulate data with inserted DMRs and compare DMR-detection methods.
 methsim is open source and developed on GitHub.

Thanks

For advice and supervision

• Terry Speed (WEHI) and Peter Hall (University of Melbourne).

For data

• Ryan Lister (UWA).

For R and C++ help

• Bioconductor and Rcpp mailing lists, especially Martin Morgan.

For funding

• Australian Postgraduate Award, Victorian Life Sciences Computing Initiative.

For sanity

• Friends and family.

To find out more

www.peterhickey.org/ASC2014 GitHub/Twitter: @PeteHaitch

Peter Hickey (@PeteHaitch)

Simulating DNA methylation data

10 July 2014 14 / 14

イロト 不得 ト イヨト イヨト