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Differentially methylated regions (DMRs)?

Methylation |
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"Hansen, K. D. et al. Nat Genet 43, 768-775 (2011)
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Why | care about simulating DNA

methylation data

Methods development and validation

o Do methods designed to find DMRs actually work?
o What method reigns supreme?
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EES———_
Why | care about simulating DNA

methylation data

Methods development and validation

o Do methods designed to find DMRs actually work?
o What method reigns supreme?

How to decide?

o No “gold standard” data = simulate
o No simulation software = I'm writing methsim.
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Simulation approaches

Simulate [-values

o Simulate independent B,-g Beta(ji;, v;) + induce

correlation via variogram model.
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ESS——
Simulation approaches

Simulate [-values

o Simulate independent B;g Beta(ji;, v;) + induce

correlation via variogram model.
o Re-sample real data in a way that tries to preserve
correlation structure.

o [-values are summarised measurements.
o Correlations of -values are spurious.

Simulate individual methylation events

o Higher resolution.

o Contains the mechanistic dependence structure.
o Difficult given current data.
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EENSS—SS.
My solution

methsim: An R package for simulating whole genome
DNA methylation data.

e Parameter distributions estimated from input data.
e Parts written in C++ (via Rcpp).
@ Results today from a preliminary version of methsim.
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EENSS—SS.
My solution

methsim: An R package for simulating whole genome
DNA methylation data.

e Parameter distributions estimated from input data.
e Parts written in C++ (via Rcpp).
@ Results today from a preliminary version of methsim.

Outline of methsim

© Segment genome into “region of similarity” (MethylSeekR!)

@ Simulate “meta-haplotypes” within each region using Markov
model.

@ Simulate sequencing of reads.

“Burger, L., Gaidatzis, D., Schiibeler, D. & Stadler, M. B. Nucleic Acids Res
(2013). doi:10.1093/nar/gkt599

v
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ESSS—_
Simulating meta-haplotypes

(2) For each region:
Simulate each meta-haplotype using a Markov model
Transition matrices depend on distance between CGs and the
type of region
Assign haplotype iin region r frequency g,

QQ 90¢ Q q,, Q__Q 9@ Q q, .,

QQ cee e, o Oee

r : R : By
QQ Qee O ® oeoe
. qH,r . qH,r+1
Regionr Region r+1
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Simulating meta-haplotypes

(2) For each region:
Simulate each meta-haplotype using a Markov model
Transition matrices depend on distance between CGs and the
type of region
Assign haplotype iin region r frequency g,

QQ 90¢ Q q,, Q__Q 9@ Q q, .,

QQ cee e, o Oee

QQ oL 1 ] Q q, ® ¢ ¢°
Region r ! Region r+1
(3) Simulate read positions
Simulate reads for region r by sampling from i haplotype with
probability g,
Simulate seqhencing error
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Within haplotype co-methylation
at neighbouring CpGs
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Within haplotype co-methylation
at neighbouring CpGs
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Correlations of pairs of § values
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EESS—S—SS.
Summary

e methsim models the mechanistic dependence
structure of DNA methylation data.
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EESS—S—SS.
Summary

e methsim models the mechanistic dependence
structure of DNA methylation data.
o Will be using methsim to simulate data with inserted

DMRs and compare DMR-detection methods.
e methsim is open source and developed on GitHub.
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|
To find out more

www.peterhickey.org /ASC2014
GitHub/Twitter: @PeteHaitch
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