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Abstract

Genome wide association studies (GWAS) have revealed fascinating insights
into the genetics of complex diseases. These studies provide many statistical
challenges but one problem that has received surprisingly little attention
is the testing of associations between phenotype and genotype on the X
chromosome.

In this thesis we show that there are methods that perform significantly
better than those in current wide-spread use for the analysis of X chromo-
some GWAS data. In particular we establish that the methods proposed
by Clayton (2008) are amongst the most powerful for X chromosome analy-
sis. We quantify these gains via a simulation study under a variety of genetic
models and experimental designs, to compare eight existing analytical meth-
ods.

Using the knowledge gained from this simulation study we apply the most
powerful method to the X chromosome data from a genome wide association
study of multiple sclerosis (Australia and New Zealand Multiple Sclerosis
Genetics Consortium (ANZgene), 2009). Our analysis identifies 11 genetic
markers that warrant further study, an improvement upon the published
analysis of this data.
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Chapter 1

Human genetics

Modern biology is producing more and more data as advances in technology
allow us to probe deeper than ever before into understanding the science of
life. In particular, the advances in genetics using what are known as high-
throughput technologies are producing gigabytes (1 GB = 109 bytes), and
even terabytes (1 TB = 1000 GB), of data for a single experiment.

With these high-throughput experiments there is a real need for skilled
analysts to help make sense of the masses of data and to distinguish signif-
icant results from the inevitable noise such experiments produce. Statisti-
cians are ideally placed to assist in this regard, and there is a boom industry
in the application of statistical methods to biological data; an area broadly
defined as bioinformatics.

1.1 A short introduction to human genetics

Human genetics describes the study of heriditary variation as it occurs in
human beings. This variation is inscribed in the human genome in the
language of DNA. Over 99.9% of the genome is common between any two
people (International HapMap Consortium, 2003) so it is not surprising that
non-heriditary effects such as upbringing and environment also contribute to
the large variation seen across the population. One of the main aims of the
research in human genetics is to better understand the genetic mechanisms
involved in human disease to improve treatments, find cures and ultimately
prevent the disease.

In this section we will explain the necessary biological terms and con-
cepts to be used in this project. This includes a brief introduction to human
genetics, with a particular focus on the X chromosome, as well as an intro-
duction to the world of the genome wide association study (GWAS).

The following material on human genetics makes close use of “An Intro-
duction to Genetic Analysis“ by Suzuki et al. (1989).
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DNA

Deoxyribonucleic acid, or DNA, carries the information necessary for the
development, maintenance, and reproduction of all organisms, from bacte-
ria to humans (Lange, 2002). Chemically, DNA is composed of only four
molecules called nucleotides. These nucleotides form in two long polymers,
with backbones made of sugars and phosphate groups joined by ester bonds
in what is now famously known as the double helix (shown in figure 1.1).

Figure 1.1: A schematic of the DNA double helix (Source: U.S. National
Library of Medicine)

It is the sequence of these four bases along the backbone that encodes
information. These 4 bases are adenine, guanine, cytosine and thymine,
commonly abbreviated to A, G, C and T respectively. As as is shown in
figure 1.1, the bases pair up in a complementary manner. Adenine always
pairs with thymine while guanine always pairs with cytosine and each such
pairing is known as a basepair (bp). The human genome is some 3.4 billion
bp in length.

Chromosomes

The genome is broken down into smaller units known as the chromosomes
which are found inside the nucleus in most cell types in the human body.
In humans, there are 24 different chromosomes denoted 1, 2, . . . , 22, X and
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Y. Chromosomes 1, 2, . . . , 22 are termed autosomes, and humans have two
copies of each in what are known as homologous pairs. For each of the au-
tosomes, a person will inherit one copy maternally and one copy paternally.
Males and females both have 22 pairs of autosomes, thus where males and
females differ are known as the sex chromosomes, the X and Y chromosomes.
This characteristic chromosome complement is called a karyotype. We show
in figure 1.2 an image of a normal human female karyotype highlighting the
chromosomal pairings.

Females carry two X chromosomes and males carry one X and one Y
chromosome. The inheritance pattern for the sex chromosomes is different
from that of the autosomes. Males inherit their Y chromosome from their
father and their X chromosome from their mother. Females receive one
X chromosome from each of their mother and father. In both sexes, the
maternally inherited X chromosome is a randomly selected copy of X1 or X2

the maternal pair of X chromosomes. The X chromosome will be discussed
in further detail in section 1.4.

Figure 1.2: A karyotype image of a normal female human genome. Note the
autosomal pairs 1, . . . , 22, the pair of X chromosomes and the absence of
the Y chromosome. Source: http://www.bio.miami.edu/~cmallery/150/
mendel/karyotype.htm accessed 9/10/2009

Loci, alleles, genotypes and haplotypes

A locus (pl. loci) is a fixed position on a chromosome. At some loci it is pos-
sible for there to be differences in the sequence of DNA between individuals.
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Such loci are called polymorphic loci and the variants at that site are called
alleles. As humans have two copies of each chromosome, they possess two
alleles at each locus (slightly different for the sex chromosomes). If there are
just two possible alleles at a locus then the allele that is more frequent (resp.
less frequent) in the population is referred to as the major (resp. minor)
allele.

The combination of the two alleles at a locus is referred to as the genotype
at that locus. For example, suppose a person has at a locus the alleles A
and B, then their genotype is denoted A/B (which is equivalent to B/A
as genotypes are unordered). A genotype such as A/A or B/B is called
homozygous and a genotype such as A/B is called heterozygous.

The sequence of alleles along the chromosome of a gamete (sperm and
egg cells) constitutes a haplotype.

Genes

Genes are the functional units of the genome. They are sequences of DNA
that provide the template for a protein. Humans have about 20,000-25,000
genes, a surprisingly small number, with over 98% of the genome being made
up of non-coding DNA whose function is currently unknown. Genes are the
functional units of heredity in a living organism (Suzuki et al., 1989).

Recombination

Recombination is a process whereby the chromosomes are “broken up” and
the genetic material reshuffled. In humans recombination occurs during
the production of the gametes and leads to the offspring having a different
combination of genes to their parents. It can be thought of as a reshuffling
of genetic material whereby a parent transmits to a child a chromosome that
is a mosaic of their own homologous parental chromosomes.

During recombination, homologous chromosomes are broken up, inter-
twine and rejoin to form a new pair of homologous chromosomes that are
a mosaic of the original homologous pair. The assortment of genetic mate-
rial to this mosaic pair is random yet preserves the overall structure of the
chromosome.

Lange (2002) gives a nice illustration of recombination. Consider a par-
ent producing a gamete. One member of each chromosome pair is painted
black and the other member is painted white. Instead of inheriting an all-
black or all-white representative of a given pair, a gamete inherits a chro-
mosome that alternates between black and white. The points of exchange
are termed crossovers. Any given gamete will have just a few randomly
positioned crossovers per chromosome.

As recombination occurs between homologous pairs of chromosomes (e.g.
the autosomes) the process of recombination is more complicated for the sex
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chromosomes (see section 1.4).

1.1.1 Genetic variation

Genetic variation can be classified into two types: inherited (aka germ-
line) variation and somatic (aka de novo) variation. Germ-line variation is
inherited from one’s parents while somatic variation is due to a mutation in
the genome during a person’s lifetime.

Every time a cell divides the genome must be replicated for these new
daughter cells. This process occurs millions of times per day and during
the replication mutations can occur spontaneously. An example of a less
“natural” mutation is a genetic mutation due to exposure to high doses of
radiation. It is important to note that not all mutations are deleterious,
indeed most are benign and equally some are advantageous. The simplest
mutation is known as a point-mutation, where one base is changed to an-
other.

More recently there has been considerable interest in copy number vari-
ations (CNVs) in which a person has more or less than the normal number
of copies of a region of the genome. There is gathering evidence that CNVs
have a role in a number of complex diseases (McCarroll and Altshuler, 2007).
For example, Down’s syndrome is caused by the presence of all or part of
an extra 21st chromosome. Until recently, only relatively large-scale CNVs
were detectable, such as whole chromosomal duplications or deletions, how-
ever with new sequencing technologies we are able to detect CNVs of a far
smaller scale.

One genetic variant of particular interest to us is called the single nu-
cleotide polymorphism, or SNP, and will be discussed in further detail.

Single nucleotide polymorphisms

Individuals may differ by a single nucleotide substitution at a SNP. For ex-
ample, consider the two sequenced DNA fragments from different individuals
shown in figure 1.3; they contain a difference at a single nucleotide (circled).

A SNP is generally bi-allelic, though up to 4 alleles are possible1. We
will denote these two possible alleles by the generic symbols A and B. Thus
at a SNP we consider 3 possible genotypes: A/A, A/B, B/B.

The International HapMap Consortium (2003) was established to “deter-
mine the common patterns of DNA sequence variation in the human genome
(of which SNPs are a major contributor)”. Of the approximately 0.1% of
the genome that is different between any two humans, the HapMap project
discovered up to 90% of this variation in the population is due to some 10
million common SNPs. The distribution of SNPs through the genome varies
between different ethnic groups, an important point we will return to later.

1Technically a SNP must have a minor allele frequency ≥ 1%
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Figure 1.3: A schematic of a single nucleotide polymorphism. DNA molecule
1 differs from DNA molecule 2 at a single base-pair location (a C/T polymor-
phism). Source: http://urgi.versailles.inra.fr/projects/GnpSNP/
images/snp_dble_helice2.png accessed 9/10/2009

1.2 Hardy-Weinberg equilibrium

Hardy-Weinberg equilibrium (HWE) is one of the fundamental concepts in
populations genetics. Provided certain conditions are met, HWE states that
both allele and genotype frequencies in a population remain constant from
generation to generation. An equivalent probabilistic description for HWE
is that the alleles for the next generation for any given individual are chosen
randomly and independently of each other.

This model relies on the seven following explicit assumptions: (a) in-
finite population size, (b) discrete generations, (c) random mating, (d) no
selection, (e) no migration, (f) no mutation, and (g) equal genotype frequen-
cies in the two sexes (Lange, 2002). Clearly these conditions are not always
satisfied in nature. However, as is common in statistics we often assume
independence (i.e. HWE) when it is “near enough” to holding true. This
will make our arguments more tractable and simplify the mathematical for-
mulae. We can formally test for deviation from HWE at a locus, for example
by using a χ2 test or Fisher’s exact test to compare the observed genotype
frequencies to the expected genotype frequencies under HWE (Lange, 2002).

Following Lange (2002), we will now define HWE as a mathematical
model for the autosomes (the case for the X chromosome will follow in
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section 1.4.1).
Assume the seven conditions for HWE hold, and for simplicities sake

we consider an autosomal loci with two possible alleles A and B. Suppose
the initial proportions of the genotypes are u for A/A, v for A/B, and
w for B/B. We then consider all possible crossings of these genotypes,
i.e. the offspring genotypes for all pairings of parents. As an example,
under HWE the result of crossing a A/A genotype with the A/B genotype
would be an offspring frequency of 1

2 with the genotype A/A and 1
2 with

the genotype A/B. These proportions of outcomes for the various possible
crosses are known as segregation ratios. Under the stated assumptions, the
next generation will be composed as shown in table 1.1

Mating Type Nature of Offspring Frequency
A/A×A/A A/A u2

A/A×A/B 1
2A/A+ 1

2A/B 2uv
A/A×B/B A/B 2uw
A/B ×A/B 1

4A/A+ 1
2A/B + 1

4B/B v2

A/B ×B/B 1
2A/B + 1

2B/B 2vw
B/B ×B/B B/B w2

Table 1.1: Mating outcomes for Hardy-Weinberg equilibrium

For the next generation we get from table 1.1 the frequencies for geno-
types A/A, A/B, and B/B as

u2 + uv +
1
4
v2 = (u+

1
2
v)2

uv + 2uw +
1
2
v2 + vw = 2(u+

1
2
v)(

1
2
v + w)

1
4
v2 + vw + w2 = (

1
2
v + w)2

respectively.
If we define the frequencies of the two alleles A and B as p1 = u+ v

2 and
p2 = v

2 +w, then A/A occurs with frequency p2
1, A/B with frequency 2p1p2,

and B/B with frequency p2
2 (with p1 + p2 = 1). After a second round of
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random mating, the frequencies of the genotypes A/A, A/B, and B/B are

(p2
1 +

1
2

2p1p2)2 = [p1(p1 + p2)]2

= p2
1

2(p2
1 +

1
2

2p1p2)(
1
2

2p1p2 + p2
2) = 2p1(p1 + p2)p2(p1 + p2)

= 2p1p2

(
1
2

2p1p2 + p2
2)2 = [p2(p1 + p2)]2

= p2
2

Thus, after a single round of random mating, genotype frequencies stabilise
at the Hardy-Weinberg proportions.

In essence, Hardy-Weinberg equilibrium corresponds to the random union
of two gametes, one gamete being an egg and the other being a sperm.
The importance of Hardy-Weinberg Equilibrium for genome wide associa-
tion studies is that certain test statistics fail to work when HWE does not
hold (we prove this in Theorem 3.1).

1.3 Linkage disequilibrium

Linkage disequilibrium (LD) is the correlation between alleles of unrelated
individuals and occurs at the level of a population. The distribution of LD
is non-uniform in the human population. Mathematically, consider two loci
i = 1, 2 with corresponding alleles Yi; the alleles are said to be in linkage
disequilibrium if they possess the property

Pr(Y2 = y2|Y1 = y1) 6= Pr(Y2 = y2), ∀y1, y2.

That is, two alleles are in LD if they are not independent of one another. One
measure of linkage disequilibrium between two loci is the standard sample
correlation correlation coefficient, r, and its square, r2.

Linkage disequilibrium plays an important role in GWA studies. We can
exploit the correlation structure within the genome to reduce the number
of SNPs we have to genotype as much information can be inferred using a
smaller subset of SNPs. For this type of approach to be feasible however
requires further knowledge of the LD structure for humans, and it was for
this reason the International HapMap project was instigated in 2002.

HapMap

The International HapMap Project genotyped several million well-defined
SNPs in 270 individuals from 4 populations. Of these 270 samples, 90 sam-
ples (30 trios of two parents and an adult child) were from a population of
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Caucasians with European ancestry living in Utah, USA (aka CEU popula-
tion); 90 samples (30 trios) were from the Yoruba people in Ibadan, Nigeria
(aka YRI population); 45 samples were from unrelated Japanese people in
Tokyo, Japan (aka JTY population); and 45 samples were from unrelated
Han Chinese people living in Beijing, China (International HapMap Con-
sortium, 2003).

Using the data generated by this project the researchers were able to
construct what amounts to an emperical distribution of linkage disequilib-
rium for each of these 4 populations. The data from this massive project
is available in the public domain from the project’s website http://www.
hapmap.org.

What makes the HapMap database so useful is that rather than having to
genotype all 10 million SNPs, researchers can instead genotype so-called tag
SNPs. Due to the correlation structure imposed by LD, tag SNPs capture
most of the information on the pattern of genetic variation within that region
resulting in huge savings in cost and time.

The data from the HapMap project can be explored using the UCSC
Genome Browser http://genome.ucsc.edu/. One useful feature of the
Genome Browser is the capability to represent the LD structure in a region
of the genome for any of the HapMap populations in the form of a heat
map. We present an example of such a plot and explain its interpretation
in figure 1.4.

1.4 X chromosome

The X chromosome is the 8th longest chromosome in humans at more than
153 million bp, some 6 times longer than the Y chromosome. Recombination
can occur along the length of the X chromosome in females, whereas in
males recombination is restricted to the so-called pseudo-autosomal regions
(PARs).

The PARs are two short regions at the tips of the X chromosome that
recombine with similar pseudo-autosomal regions on the Y in the same man-
ner as recombination in the autosomes (see figure 1.5 for a schematic of the
PARs). For all intents and purposes we can treat loci in these PARs as
we would any autosomal loci for our statistical analyses. Unless otherwise
stated, when we describe a locus on the X chromosome we mean a locus
outside the pseudo-autosomal regions.

Another biological phenomenon unique to the X chromosome is X inac-
tivation (XCI) whereby one of the female X chromosomes is silenced early in
development and remains inactive in somatic tissues thereafter. This can be
thought of as a dosage compensation mechanism to equalize the expression
of X-related characteristics in females and males. The choice of X chro-
mosome to be silenced is a random one, but the inactive chromosome is
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Figure 1.4: This diagram depicts actual data from the International HapMap
Project, showing 420 genetic variants in a region of 500 kb on human chro-
mosome 5q31. Positions of the variants and the pairwise correlations are
shown below. Those regions which are brighter red correspond to regions
containing higher levels of linkage disequilibrium. Blocks of strong correla-
tion are indicated by the black outlines. Source: Altshuler et al. (2008)

reactivated and undergoes recombination with the second X chromosome at
meiosis (Ross et al., 2005).

Importantly, we are unable to detect which of the X chromosomes has
been inactivated from genotype data alone. The genotyping process is per-
formed on a random subset of lymphocytes2 (blood cells) and will therefore
display a roughly 50 : 50 split of the A and B alleles in female heterozygotes.

The details of X-inactivation are not yet fully understood and it is a far
more complicated process than the presentation given here (see Chow and
Heard, 2009, for a discussion of current understanding and research). We
will assume, as is standard in all current methods for statistical analysis of
X chromosome data, that the inactivation process is homogeneous. That
is, we assume the inactive X chromosome is completely silenced in females,
though in reality this is not true as the inactivation process is heterogeneous
and some genes escape inactivation (see Carrel and Willard, 2005).

It is clear that due to these differences between the X chromosome and
the autosomes that the statistical analysis of X chromosome data requires

2If the DNA sample is derived from a saliva sample then the genotyping is performed
on a random subset of buccal epithelial cells and white blood cells. Source: http://www.

dnagenotek.com/DNA_Genotek_Support_FAQs_DNA.html
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Figure 1.5: A schematic showing the locations of the pseudo-autosomal
regions, PAR1 and PAR2, on the human X and Y chromosomes (not to
scale). Source: Flaquer et al. (2008)

its own specialised methods.

1.4.1 Hardy-Weinberg equilibrium for the X chromosome

Hardy-Weinberg equilibrium for the X chromosome is more subtle than for
the autosomes. For those loci in the PARs the derivation for HWE is identi-
cal to that of the autosomes, but for the remaining X loci we have a different
situation.

Consider a biallelic locus on the X chromosome and either of the two
alleles at that locus. At generation n let the frequency of the given allele
in females be qn and in males be rn. Under our stated assumptions for
HWE, one can show that qn and rn converge quickly to the value p =
2
3q0 + 1

3r0. Twice as much weight is attached to the initial female frequency
since females have two X chromosomes while males have only one.

For a male we have the following recurrence relation

rn = qn−1 (1.1)

since a male always inherits his X chromosome from his mother, and his
mother precedes him by one generation. Likewise, the frequency in females
is the average frequency for the two sexes from the preceding generation:

qn =
1
2
qn−1 +

1
2
rn−1. (1.2)
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Equations 1.1 and 1.2 together imply

2
3
qn +

1
3
rn =

2
3

(
1
2
qn−1 +

1
2
rn−1) +

1
3
qn−1

=
2
3
qn−1 +

1
3
rn−1. (1.3)

It follows that the weighted average 2
3qn + 1

3rn = p for all n.
From equations 1.2 and 1.3, we deduce that

qn − p = qn −
3
2
p+

1
2
p

=
1
2
qn−1 +

1
2
rn−1 −

3
2

(
2
3
qn−1 +

1
3
rn−1) +

1
2
p

= −1
2
qn−1 +

1
2
p

= −1
2

(qn−1 − p)

Continuing in this manner we get,

qn − p =
(
− 1

2

)n
(q0 − p). (1.4)

Thus the difference between qn and p diminishes by half at each generation,
and qn approach p in a zigzag manner. The male frequency rn displays
the same behaviour but lags behind by one generation due to (1.1). In
contrast to the autosomal case, it takes more than one generation to achieve
Hardy-Weinberg equilibrium for the X chromosome

In the extreme case that q0 = 0.75 and r0 = 0.12, figure 1.6 plots qn
and rn for 10 generations and we see that equilibrium is still approached
relatively fast.

Under HWE, the female genotypes A/A, A/B, and B/B have frequencies
p2

1, 2p1p2, and p2
2 respectively. The male hemizygous genotypes A/− and

B/− have frequences p1 and p2.

1.5 Modern genetics

The field of genetics had advanced rapidly in the time since the publication
of the first working draft of the human genome in by the International
Human Genome Sequencing Consortium (2001). Beginning in 1990, it took
this international team of hundreds of scientists 10 years to produce a map
that covered approximately 94% of the human genome. The technological
and scientific advances have been so great since that time that researchers
are already talking of full genome sequencing as becoming a routine part of
genetic research (Kahvejian et al., 2008).
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Approach to equilibrium of qn and rn as a function of n
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Figure 1.6: After just 6 generations both the allele frequency in females,
qn, and the allele frequency in males, rn, are close to equilibrium. Note
how the male allele frequency lags behind the female allele frequency by one
generation
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While the necessary reductions in cost and time are still a few years
away for full sequencing to be feasible, there are existing technologies that
are proving very powerful in helping us to understand complex genetic mech-
anisms.

One such technology is known as SNP genotyping which samples the
genome at specific locations to provide a measurement of genetic variation
between members of a species. We will explain the basic idea behind the
genotyping technology and where it has been very useful in application.

1.5.1 SNP genotyping

SNPs have proven in recent years to be a powerful measure of genetic vari-
ation in humans due to their abundance in the genome, the knowledge we
have of their distribution (from HapMap), and the relative ease with which
a large number of individuals can be assayed, or genotyped, using the tech-
nology known as SNP chips.

Current SNP chips allow the assaying of over 1 million SNPs per indi-
vidual, which provides a large data set for analyzing associations between
genotype and phenotype. The two main producers of SNP chip technology
are Illumina (www.illumina.com) and Affymetrix (www.affymetrix.com).
The two platforms use different technologies and chemistries. We will focus
on the Illumina platform, in particular the Illumina Hap370CNV chip used
by the Australia and New Zealand Multiple Sclerosis Genetics Consortium
(ANZgene) (2009).

Genotyping procedure

For each individual in the study a DNA sample is required. Generally this
is obtained via a blood sample, though saliva samples are possible too3 and
produce DNA of a similar quality for genotyping (Bahlo et al., 2009). This
DNA sample then undergoes various biochemical procedures to cut the DNA
into strands that are then repeatedly copied, via process known as “ampli-
fication”, so that there is a sufficient amount of DNA for the genotyping
process. This processed sample is then “washed” across the SNP chip where
the DNA sample hybridizes (binds) to the relavent probes.

The Illumina Hap370CNV chip has over 318,000 SNP probes to assay
genotypes as well as some 52,000 probes designed to measure copy number
variation. We know the precise location of these SNP markers in the genome,
and their variation patterns in certain populations, due to the HapMap
project. The following technical explanation of the Illumina BeadChip plat-
form is from Ritchie et al. (2009).

“Illumina BeadChips are composed of a number of rectangular strips,
each containing many randomly arranged, replicated beads. For Infinium

3Indeed some saliva samples are used in the ANZgene study
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genotyping, beads are coupled with specific 50mer probes designed to be
complementary to the sequence adjacent to the SNP site, and the two al-
leles (A,B) are discriminated using either a red or green dye (Steemers
et al., 2006). Data are acquired by scanning each strip at different wave
lengths using Illumina’s scanning device followed by automatic image anal-
ysis (Galinsky, 2003). A robust summary of the intensity in each chanel for
each SNP assayed is reported in the proprietary idat files.”

Using Illumina’s proprietary GenCall algorithm, or an open source geno-
type calling algorithm such as CRLMM (Ritchie et al., 2009), the genotypes
of the samples are then “called” from the idat files.

The clustering algorithms used to assign genotypes based on the idat files
will not be discussed in detail here, suffice to say that each SNP assayed
on the chip is assigned a genotype call. The SNPs are biallelic and thus
the genotype calls are generically called as either A/A, A/B or B/B, with
some measure of confidence also reported for this assignment procedure.
Additionally a SNP may be called NC, or “no-call”, if the calling algorithm
cannot assign the marker to a genotype cluster with sufficient confidence.
Poorly performing samples and markers are removed in the quality control
procedures prior to analysis of the data.

1.6 Genome wide association studies

A genome wide association study (GWAS) can be thought of as a new form
of the classical case/control study. Performing a GWAS has only become
feasible in the past few years due to advances in SNP chip technology and
the resulting savings in time and money. We will briefly outline the aim of a
GWAS, the challenges it provides to statisticians, and the current consensus
on “best practice” on a few key issues. For a nice review of the state of the
art for GWA studies see the paper of McCarthy et al. (2008).

A GWAS is a retrospective study where samples (people) are selected
based on the presence or absence of a particular phenotype of interest, for
example multiple sclerosis. Each person is genotyped using SNP chip tech-
nology to examine the associations between genotype and phenotype.

What makes these studies such particularly fruitful ground for statisti-
cians is the sheer size of the data generated by a GWAS. As McCarthy et al.
note, “the initial wave of GWA studies has shown that, with rare exceptions,
the effect sizes results from common SNP associations are modest, and that
samples sizes in the thousands are essential”. That is to say, each genetic
variant is believed to have only a small effect on the overall phenotypic vari-
ation so we require large sample sizes to have any hope of detecting them.
A typical GWAS may have 3000 samples with 106 observations per sample,
and the data sets are only getting bigger.

After this initial “discovery” phase of a GWAS the results must be repli-
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cated in an independent cohort to ensure their validity. As a result, a GWAS
takes a large team of scientists, medical workers and statisticians some years
to carry out — as well as considerable money. GWA studies are a particu-
larly hot area in current genetics research, and have also generated plenty
of controversy during their brief history.

Successes

The first major GWAS, performed by Sladek et al., was published in Nature
in February 2007 and identified a novel risk locus for type 2 diabetes. A
few months later in June 2007, perhaps the seminal paper on GWA studies
was published in Nature by the Wellcome Trust Case Control Consortium
(WTCCC).

The WTCCC studied 14,000 cases of seven common diseases — bipolar
disorder, coronary artery disease, Crohn’s disease, hypertension, rheumatoid
arthritis, type 1 diabetes and type 2 diabetes — and used a shared pool
of 3,000 controls. The original paper identified 24 independent association
signals with P < 5×10−7, thus validating GWA studies as powerful research
tools and establishing the experimental framework for performing them.

The popularity of GWA studies, and their power, is evidenced by the
398 published genome-wide associations through to March 2009 with P ≤
5 × 10−8 for phenotypes ranging from breast and prostate cancer, through
to hair and iris colour, through to weight and nicotine dependence (Hin-
dorff LA, Junkins HA, Mehta JP, and Manolio TA. A Catalog of Pub-
lished Genome-Wide Association Studies. Available at: www.genome.gov/
gwastudies accessed 30/08/2009).

Problems

Problems can arise in GWA studies when researchers overreach and try
to claim too much from their results. It is important to remember that
the A in GWAS stands for association, a point that boils down to the
classic statistical rule “correlation does not imply causation”. A GWAS can
only identify associations between genotype and phenotype and much more
“traditional” biological work is required to uncover the molecular mechanism
that underpins the association, if indeed it exists.

In this sense, many think of GWA studies as hypothesis-free, or hypothesis-
forming studies, rather than hypothesis driven research tools. A GWAS can
motivate a new line of research from its results but on its own cannot deter-
mine genetic causality. Some statistical challenges particular to the design of
a GWAS and the analysis of the data will be further discussed in chapter 3.

Results commonly reported for a GWAS are the odds ratios (see sec-
tion 2.2.1) of having the disease against not having the disease given a
particular genotype. These odds ratios for individual loci are typically quite
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small, of the order 1 − 2, so the question of their meaning or relevance for
treatment of the disease naturally arises. Thus even once these statistical
challenges are overcome we are still left with the difficult task of interpreting
the results so as best to direct further research and to explain the results to
the wider community.

The challenges of GWA studies are many and varied, but statisticians
are frequently suited to tackling these challenges. One such challenge, and
the focus of my thesis, is “the problem of testing for genotype-phenotype
association with loci on the X chromosome, (which) has received surprisingly
little attention” (Clayton, 2008).

23



Chapter 2

Overview of some statistical
techniques relevant to
GWAS data

We will review some statistical techniques necessary for this project includ-
ing generalized linear models, score tests and Pearson’s χ2 test, and how
these relate to one another.

2.1 Generalized linear models

Generalized linear models (GLMs) are a flexible extension to the classi-
cal linear model. This generalization allows us to model data from many
distributional forms in a similar way to the classical linear model. GLMs
bring together many statistical techniques into one cohesive framework and
have proved a very powerful and popular tool since its initial formulation
by Nelder and Wedderburn (1972). For an extensive study of GLMs we
refer the reader to McCullagh and Nelder (1989) or for a more elementary
introduction Dobson (2002); both of which we reference in the following.

Exponential family of distributions

For a GLM we assume that each component of the response vector Y =
(Y1, . . . , Yn)T has a distribution in the exponential family. The exponential
family is a class of probability distributions with many useful properties
and includes most common distributions such as the Poisson, normal and
binomial distributions. The distribution of a random variable Y belongs to
the exponential family if it can be written in the form

fY (y; θ, φ) = exp
{(
yθ − b(θ)

)
/φ+ c(y;φ)

}
(2.1)

24



for some specific φ, b(·) and c(·) (McCullagh and Nelder, 1989). If φ is known
the distribution is said to be in canonical form and θ is commonly referred
to as the natural parameter. As an example, we show that the binomial
distribution is a member of the exponential family of distributions.

Example 2.1. The binomial distribution is a member of the exponential
family of distributions.

Proof. Let Y d= Bin(n, π), then

fY (y;π) =
(
n

y

)
πy(1− π)n−y,

= exp
{
y log

( π

1− π

)
+ n log (1− π) + log

(
n

y

)}
,

which is of the form of (2.1) with

θ = log
( π

1− π

)
, b(θ) = −n log (1− π) = n log (1 + eθ),

φ = 1, c(y;φ) = log
(
n

y

)
.

We see from this example that log
(

π
1−π

)
is the natural parameter for the

binomial distribution.

GLM formulation

For a GLM we have three key components:

1. Each element Yi of the response vector Y = (Y1, . . . , Yn) is independent
and has a distribution of the same form from the exponential family
(e.g. all binomial or all Poisson).

2. A set of parameters β and a vector of predictors Xi = (xi1, . . . , xip)
for each of the Yi which we combine together in the design matrix as

X =

 X1
...
Xn

 =

 x11 . . . x1p
...

. . .
...

xn1 . . . xnp


3. A monotone link function g such that

g(µi) = XT
i β = ηi

where
µi = E(Yi)
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We can then write the joint density of Y = (Y1, . . . , Yn) as

f(y;θ,φ) = exp
{ n∑
j=1

yjθj − b(θj)
φj

+ c(yj ;φj)
}

(2.2)

where θj = θ(ηj).

2.2 Logistic regression

One popular generalized linear model is logistic regression. Logistic regres-
sion models binary responses, such as binomial data, in terms of a set of
continuous and categorical predictor variables.

The logistic regression model for data Yi
d= Binomial(ni, πi), i = 1, . . . , n

is of the form

g(πi) = logit(πi) = log
( πi

1− πi

)
= α+Xiβ (2.3)

where α is the intercept term. At first glance g may not appear to be a
function of µi but noting that µi = niπi this can be re-written as g(µi) =
log
(

µi

ni−µi

)
.

We obtain the same estimates of β regardless of whether we group obser-
vations as frequencies by covariate patterns (i.e. ni = number of observations
with the ith covariate pattern) or code each individual as 0 or 1 and write
the individual’s covariate pattern separately (i.e. ni = 1, i = 1, . . . , n).

Logistic regression can also be used to analyse 2× k contingency tables
since it models binary outcome variables. There is a wealth of literature on
logistic regression so we just highlight a few relevant points here.

2.2.1 Odds ratio

The odds ratio is a relative measure of the odds of an event occurring in
one group compared to it occurring in another group. It plays an important
role in the interpretation of results from a logistic regression model. We will
first introduce the concept using a simple example and then show how it is
generalized in the logistic regression framework.

Example 2.2. Consider the simple setup where there is some event D of
interest whose presence is studied in two groups denoted G1 and G0. For
example, let D be the event of contracting a specific disease, and Dc (the
complement of D) be the event of not contracting the disease, with G1 the
group of exposed individuals and G0 the group of unexposed individuals.

We define the joint distribution of D and G by p11 = Pr(D,G1), p10 =
Pr(D,G0), p01 = Pr(Dc, G1) and p00 = Pr(Dc, G0) where p11 + p10 + p01 +
p00 = 1. The joint distribution ofD andG can be summarised as in table 2.1.
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Disease status
D Dc

Group
G1 p11 p01

G0 p10 p00

Table 2.1: Joint distribution of disease status and group. For example,
Pr(D,G0) = p10

Alternatively, we can consider the conditional probabilities of contracting
the disease, D, given the exposure level Gi (i = 0, 1). These probabilities
are defined as in table 2.2.

Conditional probability of disease
Pr(D|·) Pr(Dc|·)

Group
G1 p11/(p11 + p01) p01/(p11 + p01)
G0 p10/(p10 + p00) p00/(p10 + p00)

Table 2.2: Conditional distribution of disease status given group. For ex-
ample, Pr(D|G0) = p10/(p10 + p00)

The odds ratio (OR) for this conditional table is given by

OR =
p11/(p11 + p01)
p01/(p11 + p01)

/p10/(p10 + p00)
p00/(p10 + p00)

=
p11

p01
/
p10

p00

=
p11p00

p01p10
(2.4)

i.e. the odds of contracting the disease when exposed compared to the odds
of contracting the disease when not exposed.

The concept of odds ratios can be extended to more complex situa-
tions via logistic regression. Suppose we have a binary response variable Y
and predictor variables X,Z1, . . . , Zp, where X is binary and the Z1, . . . , Zp
may or may not be binary. If we use logistic regression to model Y given
X,Z1, . . . , Zp, the estimated coefficient β̂x for X is related to a conditional
odds ratio by the following:

exp (β̂x) =
Pr(Y = 1|X = 1, Z1, . . . , Zp)/Pr(Y = 0|X = 1, Z1, . . . , Zp)
Pr(Y = 1|X = 0, Z1, . . . , Zp)/Pr(Y = 0|X = 0, Z1, . . . , Zp)

.

The interpretation of exp (β̂x) is an estimate of the odds ratio at the popu-
lation level between Y and X when the values of Z1, . . . , Zp are held fixed.
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A very useful property of the odds ratio is that the estimate of the odds
ratio is invariant under certain sampling schemes. This will be expanded
upon in section 2.3.

2.2.2 Relative risk

Another important measure, particularly in epidemiology and medical statis-
tics, is that of relative risk (RR). Returning to the conditional distribution
in our simple example (see table 2.2) we define the relative risk as

RR =
Pr(D|G1)
Pr(D|G0)

=
p11/(p11 + p01)
p10/(p10 + p00)

(2.5)

i.e. the probability of contracting the disease when exposed compared to
the probability of contracting the disease when not exposed.

It is important to note the difference between equation (2.4) and equation
(2.5). It is only for very small probabilities of having the disease, p11 and
p10, that p11/(p11 + p01) ≈ p11/p01 and p10/(p10 + p00) ≈ p10/p00 so that

RR =
p11/(p11 + p01)
p10/(p10 + p00)

≈ p11/p01

p10/p00
= OR

Thus for very rare diseases the relative risk can be approximated by the
odds ratio but it is important to remember that in general the odds ratio
and the relative risk are quite different concepts.

2.3 Retrospective vs prospective sampling

Retrospective and prospective sampling are two fundamental sampling meth-
ods frequently used in statistics. Each sampling method has the aim of
identifying associations between an outcome and a set of predictors, but
there are substantial differences between the two sampling schemes. Both
methods of study require cohorts of individuals who are ideally matched in
as many ways as possible (such as sex, age, ethnicity, etc.) but differ by a
certain key characteristic. This main characteristic on which they differ is
normally the variable of interest, for example the incidence of lung cancer
in a cohort of smokers versus a cohort of non-smokers.

The variables used for predicting outcomes are often referred to as expo-
sure variables in the epidemiology literature — for our lung cancer example
these may be the number of cigarettes smoked per week, weight, and family
medical history for each person.

In a retrospective study the samples are assigned to cohorts based on
their outcome variable, e.g. the presence or absence of lung cancer, and the
exposure variables are then collected from past records. For a prospective
study the samples are assigned to cohorts based on their exposure variables
and followed over time to see how these factors affect their eventual outcome.
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A retrospective study for the effects of smoking on lung cancer would be
selecting a cohort of people with lung cancer and a similar cohort without
lung cancer and determining their history of smoking. In contrast, the
prospective study for this same experiment would be selecting a cohort of
smokers and a similar cohort of non-smokers and then following both groups
over a number of years to determine the rates of lung cancer in each group.

Each of these study designs has its advantages, however it is clear a
retrospective study has the benefit of being less time consuming and cheaper
to perform than a prospective study.

For a GWAS the retrospective case/control model is clearly the more
efficient study design. But these efficiencies would not be worthwhile if the
results of a retrospective study were unreliable when compared to those
obtained from a prospective study. Fortunately there is a nice result, which
we will prove in section 2.3.1, that shows the results are identical under
certain conditions.

Furthermore, for a GWAS the interest is in identifying any genetic pre-
dictors; estimating the accuracy of the effect size is not so relevant at this
stage. Indeed, it has been argued that a retrospective study design can
result in inflated estimates of the odds ratio since the sampling may be
performed to obtain a so-called hypernormal control cohort (see, for exam-
ple, McCarthy et al., 2008; Cordell and Clayton, 2002). These hypernormal
(resp. hyperabnormal for a case cohort) are not representative of the wider
population but have been selected to increase the chance of finding the ge-
netic predictors.

2.3.1 Invariance of odds ratios under retrospective and prospec-
tive sampling

We will show that the estimate of the odds ratio is identical under either
prospective or retrospective sampling when logistic regression is used. More
precisely, “one important property of the logistic function not shared by
the other link functions is that differences on the logistic scale can be esti-
mated regardless of whether the data are sampled prospectively or retrospec-
tively” (McCullagh and Nelder, 1989). This idea will be illustrated using a
simple example, followed by a proof for the general case.

Example 2.3. Suppose that a population is partitioned according to two
binary variables, (D,Dc) referring to the presence or absence of disease, and
(G,Gc) referring to the presence or absence of a specific genetic mutation.
Suppose that the proportions of the population in the four categories thus
formed are as shown in table 2.3.

In a prospective study, a group of subjects is selected with the genetic
mutation together with a comparable group of subjects without the genetic
mutation. The progress of each group is monitored, often over a prolonged
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G Gc Total
D π00 = 0.04 π01 = 0.01 π0. = 0.05
Dc π10 = 0.16 π11 = 0.79 π1. = 0.95

Total π.0 = 0.2 π.1 = 0.8 1

Table 2.3: Hypothetical frequencies of disease and genetic status

period, with a view towards comparing the incidence of the disease in the
two groups. In this design the column totals in table 2.3 can be thought
of as being fixed by design while the row totals are random, reflecting the
incidence of the disease in the overall population.

In a retrospective study the subjects are sampled based on their disease
status and it is their genetic status that is now considered as random. In
this way the row totals can now be thought of as fixed by design while the
column totals are random, reflecting the frequency of the genetic mutation
in the population.

Considering the prospective study first, the logits (logarithm of the odds)
for the two genetic groups are

log(π10/π00) = log(4) = 1.386
log(π11/π01) = log(79) = 4.369.

The log odds ratio is thus

log(OR) = log(π11/π01)− log(π10/π00)
= 2.983,

from which we can find ÔR = exp(2.983) = 19.74697. But this could equally
be estimated by sampling retrospectively from the two disease groups D and
Dc since

log(OR) = log(π11/π01)− log(π10/π00)
= log(π11/π10)− log(π01/π00)
= log(4.9375)− log(0.25)
= 1.597− (−1.386)
= 2.983,

also gives ÔR = exp(2.983) = 19.74697. In fact, for this example a retro-
spective study design will be much more efficient than a prospective study.
For a prospective study to be effective would require a very large number of
healthy individuals to be involved and followed up for a long time in order
for a sufficient number of subjects to fall victim to the disease.
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However, for a retrospective study a large number of subjects with the
disease can be identified, via hospital records for example, and their geno-
types assayed using SNP chips. The advantages of a retrospective study
design here are clear and they, along with the reasons given in section 2.3,
are why GWA studies are generally performed using a retrospective sampling
study design.

We will now extend the above argument to a vector of covariates x
(such as multiple SNP genotypes). Provided the intercept is treated as a
nuisance parameter we show that the estimates of the regression parameters
are identical, regardless of whether the sample is obtained prospectively or
retrospectively.

We may write the linear logistic model in the form

Pr(D|x) = exp(α+ βTx)/[1 + exp(α+ βTx)] (2.6)

for the probability of contracting the disease given that the subject has
covariates x.

Model (2.6) is appropriate for data that has been sampled prospectively;
however suppose the data was instead collected retrospectively. It is essential
that the sampling proportions depend on disease status only and not on the
covariates, x. We introduce a dummy variable Z to define whether an
individual is sampled or not, and denote these sampling proportions by

Pr(Z = 1|D,x) = Pr(Z = 1|D) = q0

Pr(Z = 1|Dc,x) = Pr(Z = 1|Dc) = q1

We can now apply Bayes’ Theorem to compute the disease frequency among
sampled individuals who have a specified covariate vector x.

Pr(D|Z = 1,x) =
Pr(Z = 1|D,x) Pr(D|x)

Pr(Z = 1|D,x) Pr(D|x) + Pr(Z = 1|Dc,x) Pr(Dc|x)

=
q0

[
exp(α+βT x)

1+exp(α+βT x)

]
q0

[
exp(α+βT x)

1+exp(α+βT x)

]
+ q1

[
1− exp(α+βT x)

1+exp(α+βT x)

]
=

q0

[
exp(α+βT x)

1+exp(α+βT x)

]
q0

[
exp(α+βT x)

1+exp(α+βT x)

]
+ q1

[
1

1+exp(α+βT x)

]
=

q0 exp(α+ βTx)
q0 exp(α+ βTx) + q1

=
exp(α∗ + βTx)

1 + exp(α∗ + βTx)
(2.7)

where α∗ = α+ log(q0/q1).
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Comparing (2.7) with (2.6) we see that the two equations have identi-
cal β and only differ in their intercept terms, α∗ and α respectively. In
other words, the logistic model (2.6) continues to apply with the same co-
efficients β but a different intercept. It follows therefore, that the logistic
models described here in the context of prospective studies can be applied
to retrospective studies provided that the intercept is treated as a nuisance
parameter.

2.4 Score tests

The score test, sometimes known as Rao’s score test, is based on the asymp-
totic distribution of the score statistic ∂`/∂θ. The following derivation of
the score test is from Smyth (2003).

Let `(θ1,θ2;y) be a log-likelihood function depending on a response
vector y and parameter vectors θ1 and θ2. The score test is a test of the
hypothesis H0 : θ2 = 0 against the alternative that θ2 is unrestricted. We
call the parameters θ1 nuisance parameters as we are not interested in them
but they must still be estimated for the score test statistic to be computed.
The likelihood score vectors for θ1 and θ2 are the partial derivatives

˙̀
1 =

∂`

∂θ1

and
˙̀
2 =

∂`

∂θ2

respectively. The observed information matrix for the parameters is −῭with

῭=
∂2`

∂θ1θT2
=
( ῭

11
῭
12

῭
21

῭
22

)
.

The expected or Fisher information matrix is I = E(−῭), which is parti-
tioned conformally with ῭ as

I =
(
I11 I12

I21 I22

)
.

The score test statistic is based on the fact that the score vector ˙̀ is nor-
mally distributed with mean zero and covariance matrix I. If the nuisance
parameter θ1 is known, then the score test statistic of H0 is

Z = I−1/2
22

˙̀
2,

where I1/2
22 stands for any factor such that I1/2

22 (I1/2
22 )T = I22, or equivalently

S = ZTZ = ˙̀T
2 I−1

22
˙̀
2
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with `2 and I22 evaluated at θ2 = 0. The score vector ˙̀ is a sum of terms
corresponding to individual observations and so is asymptotically normal
under standard regularity conditions. It follows that Z is asymptotically
a standard normal p2-vector under the null hypothesis H0 and that S is
asymptotically chi-square distributed on p2 degrees of freedom, where p2 is
the dimension of θ2.

If the nuisance parameters are not known (as is often the case), the score
test requires their substitution by their maximum likelihood estimators θ̂1

under the null hypothesis. Setting θ1 = θ̂1 is equivalent to setting ˙̀
1 = 0,

so we need the asymptotic distribution of ˙̀
2 conditional on ˙̀

1 = 0, which is
normal with mean zero and covariance matrix

I2.1 = I22 − I21I−1
11 I12. (2.8)

The score test becomes
S = ˙̀T

2 I−1
2.1

˙̀
2 (2.9)

with ˙̀
2 and I2.1 evaluated at θ1 = θ̂1 and θ2 = 0.

If I12 = 0 then θ1 and θ2 are said to be orthogonal. In that case, ˙̀
1 and

˙̀
2 are independent and I2.1 = I22, meaning that the information matrix I22

does not need to be adjusted for estimation of θ1.
As an example of where score tests may be useful in the GWAS context,

consider the setting where we wish to regress (in a GLM) each sample’s
phenotype on their genotype at a particular SNP to asses the SNP’s signifi-
cance. In this case θ1 (our nuisance parameter) is some overall mean of the
sample and θ2 (our parameter of interest) is the genotype at that SNP. The
significance of the SNP can be assessed using a score test. This idea can be
extended to multiple SNPs provided that p, the total number of SNPs in
the full model, is less than n, the sample size.

The score test is an alternative to the likelihood ratio test or the Wald
test, and as Smyth notes “the score test is often simpler than the likelihood
ratio test because the statistic requires parameter estimators to be obtained
only under the null hypothesis”. This advantage comes to the fore in the
analysis of GWAS data due to the hundreds of thousands of tests that need
to be computed.

2.5 Pearson’s χ2 test

When people talk of a χ2 test they are generally referring to Pearson’s χ2

test, perhaps the simplest and most common way to analyse data in the
form of a contingency table. In what follows, when we refer to a χ2 test we
implicitly mean Pearson’s test.

The χ2 test can be used to test the hypothesis that paired observations
expressed in a contingency table are independent of one another. It contrasts
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the number of observed times a response occurs with the number of times
you would expect if the two events were independent.

Let us consider a contingency table with two factors A and B, with c
and r levels respectively. For each combination of factors, (i, j), we have an
observed count Oij which can be represented as cell (i, j) in a contingency
table (see table 2.4).

A1 . . . Ac Total
B1 O11 . . . O1c

∑c
l=1O1l = O1.

...
...

. . .
...

...
Br Or1 . . . Orc

∑c
l=1Orl = Or.

Total
∑r

k=1Ok1 = O.1 . . .
∑r

k=1Okc = O.c
∑r

k=1Ok. =
∑c

l=1O.l = n

Table 2.4: A general r × c contingency table

Under the null hypothesis of independence of rows and columns (i.e.
no association between any levels of the two factors) we have an expected
number of observations given by

Eij =
Oi. ×O.j

n
.

The test statistic X2 contrasts the observed counts with the expected counts
for each cell in the form

X2 =
r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
. (2.10)

Under the null hypothesis, X2 has an approximate χ2 distribution on rc−
(r+ c− 1) = (r− 1)(c− 1) degrees of freedom. The value of the X2 statistic
can then be compared against the corresponding χ2

(r−1)(c−1) distribution to
determine the significance of the result. For the 2 × 2 table there exists a
well-known computational “shortcut” to calculate X2, namely

X2 =
n
(
O11O22 −O12O21

)
O.1O.2O1.O2.

. (2.11)

It is worth noting that there exist so-called “exact tests” for contingency
tables (see Agresti, 1992) but these will not be pursued here as for the most
part it is Pearson’s χ2 that is used in GWA studies owing to the large sample
sizes at play and the test’s computational efficiency.

2.5.1 Relationship between Pearson’s χ2 statistic and the
score test

Pearson’s χ2 statistic, in addition to its simple set up and calculation, has a
deeper relationship with the score test for generalized linear models. Smyth

34



(2003) shows that for any generalized linear model, the Pearson goodness of
fit statistic is the score test statistic for testing the current model against
the saturated model.

A corollary of this result is that the χ2 test for independence in a r × c
contingency table is a score test statistic, based on the assumption that the
counts are independent and Poisson distributed. This amounts to the logistic
regression assumption that the Yi are binomially distributed, conditional on
the row totals.
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Chapter 3

Statistical challenges
particular to GWAS

GWA studies provide many statistical challenges due to the high dimension-
ality of the data. Many standard techniques fail, or must be modified, as
we have many more predictor variables than observations. A typical GWAS
has 300,000 - 1,000,000 observations (SNP genotypes) per sample, but only
a few thousand samples (people), which puts us in the realm of p � n
dimensionality.

In addition to the challenges of the high dimensionality of the data, there
is much work in the pre-processing of the data. This includes, for example,
quality control procedures and the imputation of missing data, and will only
be given a cursory overview here. A nice review of the range of statistical
methods used in GWA studies can be found in Balding (2006).

3.1 Pre-processing of data

There is a large amount of time and effort spent on the so-called “cleaning”
of the data that is produced by the genotyping procedure. Potential sources
of bias and contamination include hidden population structure due to popu-
lation stratification and “cryptic relatedness”. Also, with such complicated
technology involved in the genotyping process, errors inevitably occur and
need to be dealt with prior to any analysis of the data due to the possibility
of spurious associations.

There exist a variety of quality-control procedures including the removal
of poorly performing SNPs, and the removal of poorly performing samples.
We will highlight some of the quality control (QC) procedures implemented
by the ANZgene study to give a sense for how these issues are handled in
practice.

The first step of QC is the removal of entire samples that fail the geno-
typing process. In the ANZgene study (discussed in chapter 5), a criterion
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for an entire sample to be removed was if the genotype call rate1 was less
than 98%. The call rate of a sample gives a strong indication of the quality
of the genotyping procedure, though it will of course not detect samples that
have been repeatedly miss-called as opposed to no-called.

The second stage of QC is the removal of individual SNPs across all the
remaining samples. For the ANZgene study, SNPs were excluded if they
had a minor allele frequency < 1% or were in significant Hardy-Weinberg
disequilibrium (P < 1 × 10−7). If not excluded, poorly performing SNPs
“might be disproportionately represented among the most extreme associa-
tion signals” (McCarthy et al., 2008).

The missing genotype data can often be “recovered” using imputation
methods, due to the phenomenon of linkage disequilibrium (see section 1.3).
The imputation of missing genotypes was performed for the ANZgene study
using the HapMap data as a reference, but only for the autosomes (see Aus-
tralia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene),
2009, Methods).

The final stage of the quality-control procedure is the removal of samples
that display cryptic relatedness, and to assess hidden population structure
in the remaining case and control data. Cryptic relatedness is evidence —
typically gained from analysis of GWA data — that, despite allowances for
known family relationships, individuals in the study sample have residual,
non-trivial degrees of relatedness, which can violate the independence as-
sumptions of standard statistical techniques (McCarthy et al., 2008). It is
surprisingly common to find closely related individuals enrolled in the same
study despite the best efforts of researchers to obtain “independent” sam-
ples. Inadvertent duplication, swaps, or mislabeling of samples (such as a
male sample being labeled female) are also frequently revealed in the quality-
control stage of a GWAS. Samples can also be removed if they display hidden
population structure which is assessed using principal components analysis
on a subset of the SNPs that have been “pruned” for LD.

3.2 GWAS analysis software

Some of the key challenges provided by GWA studies are computational.
These challenges range from data management issues of said large data
sets, through to performing the statistical analysis in the most efficient way
possible. Aside from the proprietary software of the SNP chip manufac-
turers (e.g. Illumina GenomeStudio and Affymetrix Genotyping Studio)
there has been much development of third party software for the analysis of
GWAS data. This software ranges from genotype calling algorithms such as
CRLMM (Carvalho et al., 2007) through to software to perform statistical

1For each sample the call rate = (number of SNPs genotyped - number of no-
calls)/(number of SNPs genotyped)
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tests on the cleaned data.
Some of these tools are written as add-ons for existing statistical pro-

gramming environments such as R and SAS, while others are stand-alone
programs written specifically for the analysis of GWAS data. One of the
most widely used third party programs is the stand-alone software PLINK (Pur-
cell et al., 2007). In the words of the software’s authors, “PLINK is a free,
open-source whole genome association analysis toolset, designed to perform
a range of basic, large-scale analyses in a computationally efficient manner”.
It does this job very well and is widely used; for example both the ANZgene
consortium and International Multiple Sclerosis Genetics Consortium used
PLINK in the analysis of their respective GWA studies. However, PLINK
does have its shortcomings, particularly in relation to the analysis of X
chromosome data as we shall see in section 3.6.1 and chapter 4

3.3 Multiple testing

It is clear that the significance level, α, for a GWAS requires adjustment
for the hundreds of thousands of hypothesis tests being performed. The
simplest approach is the Bonferroni correction, which gives the genome wide
significance level, α, as

α = α∗/n,

where n is the number of tests performed and α∗ is the target significance
level. Using α∗ = 0.05 and n = 106 results in a genome wide significance
level of α = 5× 10−8.

The application of a Bonferroni correction for GWAS results has been
criticised by Cordell and Clayton (2002), who argue, “approaches such as
the Bonferroni correction are not appropriate because it is not the number
of tests in any one investigation that is important. Rather, it is that the
vast majority of loci tested will not be associated, so that even a small false
positive probability will mean that most positive results will turn out to be
false.” They thus advocate Bayesian, or empirical Bayes methods to allow
calculation of the posterior probability that an association is genuine when
a prior probability of association is known. As yet however, such Bayesian
methods are not well developed and the frequentist paradigm remains the
dominant one for assessing genome wide significance.

Dudbridge and Gusnanto (2008) also studied the question of signifi-
cance thresholds for GWA studies. Using a complicated permutation and
bootstrap method, the authors suggest a genome wide significance level of
7.2 × 10−8, a result of the same order as the far simpler Bonferroni cor-
rection. In practice a genome wide significance level of α ≈ 5 × 10−8 is a
popular choice (McCarthy et al., 2008).

Having discussed the choice of an appropriate significance level I will now
say that adherence to it is often somewhat loose. This is not unreasonable
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since a GWAS is frequently used to prioritize regions of the genome for
further analysis rather than definitively determine risk-associated loci. A
common approach for selecting SNPs for further study is to rank the SNPs
by p-value and select the 500 SNPs2 with the lowest p-values as SNPs to
be used in the replication phase of the study. This selection of “highly
significant” markers is supplemented by SNPs of some biological interest to
the researchers, such as markers within genes suspected of having a role in
the disease, or SNPs with a previously reported association to the disease
or related disease.

3.4 Association tests

The majority of GWA studies use single point analyses where each SNP
is analysed individually in turn. While this is not ideal, for reasons to be
outlined below, it has thus far been the most powerful tool for the analysis
of GWAS data (McCarthy et al., 2008). Firstly, at a local level, SNPs are
frequently co-linear due to linkage disequilibrium. This will cause all the
usual problems associated with co-linearity of predictor variables — such
as highly variable parameter estimates if using the SNPs in a regression
context — but this co-linearity can have its advantages. The genotyping of
multiple SNPs from a local region in the genome can be desirable because
not all SNPs are equally powerful, due to differences in allele frequencies for
example. Furthermore, some SNPs will fail in the genotyping procedure and
so having multiple genotyped SNPs in a region means that we can often use
a nearby marker as a proxy for missing data.

On a more global scale, single point analyses are not ideal owing to much
biological interest in interactions between loci. The high dimensionality
of GWAS data makes the systematic testing of interactions between SNPs
infeasible. Any testing of interactions in a GWAS is typically confined to
testing for interactions between significant main effects.

3.4.1 Autosomal association testing

We will now introduce the most common association tests for autosomal
data and derive some key results for these. This is in anticipation of our
discussion of methods specific to the X chromosome in section 3.6.

We begin, of course, by introducing some notation. Consider a SNP with
two possible alleles, A and B, resulting in the three possible genotypes A/A,
A/B, and B/B (we ignore no-calls here). We have genotype data for R
cases and S controls giving a total of R+S = N genotypes. The respective
genotype frequencies are given as in table 3.1 with the subscripts denoting

2Or another somewhat arbitrary number of SNPs
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the number of B alleles. At each locus we have one observation per sample
— the genotype.

Genotype
A/A A/B B/B Total

Cases r0 r1 r2 R
Controls s0 s1 s2 S

Total n0 n1 n2 N

Table 3.1: Generic genotype table for autosomal data

As each person has two alleles at any autosomal locus, the data can also
be summarised by counting the number of alleles present, rather than the
frequencies of genotypes (see table 3.2). At each locus we now have two
observations per sample — 1 observation for each of the alleles.

Allele
A B Total

Cases 2r0 + r1 2r2 + r1 2R
Controls 2s0 + s1 2s2 + s1 2S

Total 2n0 + n1 2n2 + n1 2N

Table 3.2: Generic allele table for autosomal data

An obvious question is whether the two different approaches will lead us
to the same results. A sensible answer would seem to be in the affirmative,
provided that each of the alleles were independent, that is assuming Hardy-
Weinberg equilibrium. Sasieni (1997) formalises this intuitive notion and we
will derive this result in section 3.5.

3.4.2 Allelic test

The test statistic for the allele table is referred to as the allele based test
(ABT) in the GWAS literature. The test statistic is given by

X2
A =

2N{2N(r1 + 2r2)− 2R(n1 + 2n2)}2

(2R)2(N −R){2N(n1 + 2n2)− (n1 + 2n2)2}
. (3.1)

We show in Remark A.1 of the appendix that X2
A is simply the Pearson’s

χ2 test of the allele table, and thus X2
A has an approximate χ2 distribution

on 1 degree of freedom under the null.
It is important to note that the ABT assumes that the 2 chromosomes

carried by each individual can be regarded as independently sampled from
a population of chromosomes — the assumption of Hardy-Weinberg equi-
librium.
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3.4.3 Genotype tests

Genotype tests are designed to test a specific alternative hypothesis reflect-
ing a biologically plausible genetic model. The three classical models are
known as dominant, recessive and additive, and are most used in practice
(though others have also been proposed). These three models can be con-
structed in terms of genotypic relative risks.

The genotypic relative risks (GRRs) are a 3-vector λ = (λ0, λ1, λ2) of
relative risks defined by

λ0 =
Pr(Case|AA)
Pr(Case|AA)

≡ 1

λ1 =
Pr(Case|AB)
Pr(Case|AA)

λ2 =
Pr(Case|BB)
Pr(Case|AA)

.

The GRRs corresponding to various genetic models are summarised in ta-
ble 3.3. It is not hard to see that the vector of GRRs can be completely
determined by specifying a model and λ2 = r.

Model λ = (λ0, λ1, λ2)
Null (1, 1, 1)

Dominant (1, r, r)
Recessive (1, 1, r)
Additive (1, r+1

2 , r)

Table 3.3: Genotypic relative risks, λ, for the null model and the 3 classical
genetic models. Here we assume B is the risk allele and so r > 1.

The interpretation of the classical autosomal models are as follows:

• For a dominant model the genetic risk is identical regardless of whether
1 or 2 copies of the risk allele are present

• For a recessive model the genetic risk exists only if 2 copies of the risk
allele are present

• For the additive model the genetic risk for the heterozygous genotype
lies halfway between the risks for the 2 homozygous genotypes

Unlike the ABT where we have two observations per sample the genotype
tests have just the one observation per sample. The genotype tests are
therefore not subject to the assumption of HWE as we are now conducting
the analysis on the genotype level rather than the allele level.
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The two classes of genotype tests are the conventional Pearsonian χ2 on
2 degrees of freedom for the 2×3 genotype table and the Cochran-Armitage
trend test on 1 degree of freedom for testing the hypothesis of a specific
genetic model. As the true genetic model is usually not known procedures
to test multiple genetic models at each SNP that include corrections for
this multiple testing have been proposed (see, for example, Joo et al., 2009;
Freidlin et al., 2002).

3.4.4 Cochran-Armitage trend test

The Cochran-Armitage (CA) trend test (Cochran, 1954; Armitage, 1955)
can be used to test for a dose-response effect between the risk of having
a disease and the genotype of a sample. It is the ubiquitous test in the
GWAS literature (see McCarthy et al., 2008; Balding, 2006; Australia and
New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), 2009, for
example). The test involves a parameter vector x = (x(0), x(1), x(2)), with
the choice of x corresponding to a particular genetic model.

The general form of the Cochran-Armitage trend test for the 2×3 geno-
type table is

X̃2
CA(x) =

N
(
N
∑2

j=0 rjx(j) −R
∑2

i=0 njx(j)

)2
R(N −R)

{
N
∑2

j=0 njx
2
(j) −

(∑2
j=0 njx(j)

)2} (3.2)

where the x(j), j = 0, 1, 2 are weights or “scores” for each of the 3 genotypes
A/A, A/B, and B/B respectively. Under the null hypothesis X̃2

CA(x) has
an approximate χ2 distribution on 1 degree of freedom (we prove this in
section 3.5).

In GWA studies, when B is the disease-associated allele (risk allele), the
optimal choice of x is (0, 0, 1), (0, 1, 2), and (0, 1, 1) for the recessive, additive
and dominant genetic models respectively.

Zheng et al. (2009) show that the CA trend test is invariant to linear
transformations of x, i.e. X̃2

CA(x) ≡ X̃2
CA(0, (x(1) − x(0))/(x(2) − x(0)), 1),

so that the test can be reduced to a one parameter form X2
CA(x) where

x ∈ [0, 1].
While we have noted that the Cochran-Armitage test can be parame-

terised to test the hypothesis of various genetic models, it is most commonly
used to test the hypothesis of an additive model. McCarthy et al. (2008) note
that in situations when few causal variants are likely to be genotyped (such
as in a GWAS), the additive model is likely to perform well. The additive
version of the test is reasonably robust to misspecification of the true genetic
model, though Lettre et al. (2007) note it performs poorly when the true
mode of inheritance is recessive with a low minor allele frequency.

In the additive model the alternative hypothesis is that of a monotonic
trend in the case-control ratio ordered by the number of copies of a nomi-
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nated allele (0, 1 or 2), reflecting risk in the underlying population (Clayton,
2008). The appropriate choice of weights for testing the additive model are
x(j) = j, j = 0, 1, 2 giving us the best-known, and most-widely applied,
expression for the CA test in the GWAS literature,

X2
G := X̃2

CA(0, 1, 2)

≡ X2
CA(1/2)

=
N{N(r1 + 2r2)−R(n1 + 2n2)}2

R(N −R){N(n1 + 4n2)− (n1 + 2n2)2}
. (3.3)

We show in section 3.5 that the Cochran-Armitage (CA) trend test is in fact
a score test for a logistic regression model of phenotype given genotype.

3.4.5 Alternatives to the Cochran-Armitage trend test

There have been a variety of other approaches proposed for the analysis
of autosomal data. An obvious downside to the CA trend test is the re-
quirement to specify the correct genetic model to achieve (local) maximum
power. In the complex genetic diseases that are of interest in GWA studies
this genetic model is rarely known. This has prompted the development and
use of more robust statistical tests.

Lettre et al. (2007) investigated the effects of model misspecification
when using the Cochran-Armitage trend test for autosomal data. Based on
their results they promote the conventional Pearsonian χ2 test on 2 degrees
of freedom for the 2 × 3 genotype table as a robust alternative to the CA
trend test.

The advantage of the χ2 test is that the alternative hypothesis is simply
an association between disease and genotype rather than any specific genetic
model. However owing to the additional degree of freedom in the χ2 test, it
is less powerful than the X2

CA(x) when the choice of x accurately captures
the true genetic model.

Another robust alternative to the CA trend test is the MAX test proce-
dure (Podgot et al., 1996; Freidlin et al., 2002). To calculate the MAX test
for a single SNP the CA trend test is calculated under a number of genetic
models (e.g. dominant, recessive, additive, etc.) and then the most signif-
icant test result is selected. The asymptotic null distribution of the MAX
statistic is not known and so must be approximated via numerical meth-
ods. This is clearly a more computationally demanding procedure than the
Pearsonian χ2 test on 2 degrees of freedom and will not be pursued further
here.

The statistical analysis of the Wellcome Trust Case Control Consortium
(2007) (WTCC) GWAS applied Bayesian methods to account for the prior
belief of the existence of some number of genes involved in the disease. This
involves the reporting of Bayes factors, in addition to p-values, to assess the
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significance of each association. Additional research by the those involved
in the WTCCC study has been focused on multi-marker, imputation and
haplotype based analyses of GWAS data.

This is by no means a complete list of analytical methods that have been
applied to GWAS data (a variety of data-mining type approaches have been
proposed for example) but it is important to bear in mind that there is
much ongoing research into methods other than the popular single-marker
Cochran-Armitage trend test.

3.5 Some key results for autosomal tests

The allele based test has received considerable criticism in the literature due
to the requirement of HWE holding for the test to be valid. Zheng (2008)
calls for the test to be “retired” from analysis of GWA studies and labels the
ABT a “nuisance test”. This criticism is based on the following two results
which are due to Sasieni (1997).

Theorem 3.1 (Sasieni, 1997). For the allele based test X2
A to be valid re-

quires HWE to hold in the population.

Proof. As we have seen, Hardy-Weinberg equilibrium is equivalent to the 2
alleles a person receives being independently chosen. Suppose that a propor-
tion p of the alleles in a population are of type A. The number of alleles of
type A received by an individual will be binomially distributed (with n = 2
and probability p) if and only if sampling of the two alleles is independent.

Without the requirement of Hardy-Weinberg equilibrium, the χ2 approx-
imation for the allele based test X2

A is invalid. The reason for this invalidity
is that it assumes that s1 + 2s2, the number of controls with the B allele,
is binomially distributed from a sample size of 2S. By the above argument,
s1 + 2s2 will only be binomially distributed if the two alleles in a given
individual are independent, i.e. if Hardy-Weinberg equilibrium holds.

The ABT is locally most powerful if and only if the allele effect is additive
and HWE holds in the population (Sasieni, 1997). The Cochran-Armitage
trend test does not require HWE as it is a test at the genotype level rather
than at the allele level. Sasieni further shows that X2

A is equivalent to X2
G

under HWE.

Theorem 3.2 (Sasieni, 1997). X2
A ≡ X2

G if and only if HWE holds in the
population.

Proof. Looking at the definitions of X2
A (3.1) and X2

G (3.3) we see that the
numerators, apart from a factor of 8, are identical. However the denomina-
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tors (variances) differ. We define

Q =
2N
{
N(r1 + 2r2)−R(n1 + 2n2)

}2

R(N −R)
B = 2N(n1 + 2n2)− (n1 + 2n2)2

C = 2
{
N(n1 + 4n2)− (n1 + 2n2)2

}
(note there is an typographical error in Sasieni’s original definition of Q).
Via some simple algebra we see that

Q

B
=

2N
{
N(r1 + 2r2)−R(n1 + 2n2)

}2

R(N −R)
{

2N(n1 + 2n2)− (n1 + 2n2)2
} × 4

4

=
2N
{

2N(r1 + 2r2)− 2R(n1 + 2n2)
}2

(2R)2(N −R)
{

2N(n1 + 2n2)− (n1 + 2n2)2
}

= X2
A

and

Q

C
=

2N
{
N(r1 + 2r2)−R(n1 + 2n2)

}2

R(N −R)2
{
N(n1 + 4n2)− (n1 + 2n2)2

}
=

N
{
N(r1 + 2r2)−R(n1 + 2n2)

}2

R(N −R)
{
N(n1 + 4n2)− (n1 + 2n2)2

}
= X2

G

and thus X2
A/X

2
G = C/B. Noting that N = n0 + n1 + n2, we then have

B = (n1 + 2n2)
{

2(n0 + n1 + n2)− n1 − 2n2

}
= (n1 + 2n2)(n1 + 2n0)

and

C = 2
{
N(n1 + 2n2)− (n1 + 2n2)2 + 2Nn2

}
= 2
{

(n1 + 2n2)(n0 + n1 + n2 − n1 − 2n2) + (n0 + n1 + n2)2n2

}
= 2
{
n1n0 + 4n0n2 + n1n2

}
= B + 4n0n2 − n2

1.

So we have the result that

X2
A

X2
G

=
C

B
= 1 +

4n0n2 − n2
1

(n1 + 2n2)(2n0 + n1)
(3.4)

where (3.4) is equal to 1 if and only if 4n0n2 − n2
1 = 0. The condition that

4n0n2 − n2
1 = 0 can only occur if the observed genotypic proportions are

strictly in equilibrium and so the result follows3.
3See Guedj et al., 2008, for a formal probabilistic proof of this final statement
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Not surprisingly, X2
G is the locally most powerful test if and only if the

allele effect is exactly additive (Zheng, 2008) and the above proof shows that
X2
A is locally most powerful if and only if the allele effect is additive and

the population is in Hardy-Weinberg equilibrium (Sasieni, 1997). Similarly,
X2
CA(x) is the locally most powerful test if the choice of x correctly specifies

the true (and generally unknown) genetic model.

The Cochran-Armitage trend test is a score test statistic

We now show that the Cochran-Armitage trend test is simply a score test
statistic from a logistic regression model. We begin the proof by calculating
the score test statistic for a logistic regression of phenotype on genotype.

Let

Yi =
{

1 if individual i is a case
0 if individual i is a control

and for each SNP we encode the genotypes for individual i as

ai =


x(0) if A/A
x(1) if A/B
x(2) if B/B

where the x(j) are as in the X2
CA(x(0), x(1), x(2)) test.

Definition 3.3. The logistic regression score test statistic for testing a linear

trend in genotype/phenotype associations is S =
(PN

i=1 ai(Yi−Ȳ )
)2

Ȳ (1−Ȳ )
PN

i=1(ai−ā)2

Proof. We treat the Yi as independent Binomial(1, πi) trials with πi =
exp(α+βai)

1+exp(α+βai)
where ai is the observed genotype of the ith sample and model

P (Yi|ai) using logistic regression. Thus

L(π1, . . . , πN ) =
N∏
i=1

πyi
i (1− πi)1−yi

=
N∏
i=1

( exp(α+ βai)
1 + exp(α+ βai)

)yi
(

1− exp(α+ βai)
1 + exp(α+ βai)

)1−yi

=
N∏
i=1

( exp(α+ βai)
1 + exp(α+ βai)

)yi
( 1

1 + exp(α+ βai)

)1−yi

=
N∏
i=1

(
exp(α+ βai)

)yi
/(

1 + exp(α+ βai)
)

= L(α, β)
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giving

ln(L(α, β)) = `(α, β)

=
N∑
i=1

[
yi(α+ βai)− ln

(
1 + exp(α+ βai)

)]
Using the notation of section 2.4, we define α = θ1 as the nuisance parameter
and β = θ2 as our parameter of interest since a non-zero β corresponds to
an association between genotype and phenotype.

Taking derivatives of the log-likelihood function `(α, β) with respect to
α and β yields the score functions

˙̀
1 =

∂`

∂α

=
N∑
i=1

[yi −
exp(α+ βai)

1 + exp(α+ βai)
]

=
N∑
i=1

(yi − πi) (3.5)

and

˙̀
2 =

∂`

∂β

=
N∑
i=1

[yiai − ai
exp(α+ βai)

1 + exp(α+ βai)
]

=
N∑
i=1

ai(yi − πi) (3.6)

The observed information matrix for the parameters is −῭ with

῭=
∂2`

∂αβ

=
( ῭

11
῭
12

῭
21

῭
22

)
=

( ∑N
i=1 πi(πi − 1)

∑N
i=1 aiπi(πi − 1)∑N

i=1 aiπi(πi − 1)
∑N

i=1 a
2
iπi(πi − 1)

)
and the Fisher information matrix is given by I = E(−῭), which is parti-
tioned conformally with ῭ as

I =
(
I11 I12

I21 I22

)
=

( ∑N
i=1 πi(1− πi)

∑N
i=1 aiπi(1− πi)∑N

i=1 aiπi(1− πi)
∑N

i=1 a
2
iπi(1− πi)

)
.
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To calculate the score statistic S we need I2.1 the asymptotic variance of ˙̀
2

conditional on ˙̀
1 = 0. Using the formula given in section 2.4 we have

I2.1 = I22 − I21I−1
11 I12

=
[ N∑
i=1

a2
iπi(1− πi)

]
−
[ N∑
i=1

aiπi(1− πi)
1∑N

i=1 πi(1− πi)

N∑
i=1

aiπi(1− πi)
]

=
[ N∑
i=1

a2
iπi(1− πi)

]
−
[(∑N

i aiπi(1− πi)
)2∑N

i=1 πi(1− πi)

]
. (3.7)

The score test statistic for testing the hypothesis that β 6= 0 is given by

S = ˙̀
2I−1

2.1
˙̀
2 (3.8)

with ˙̀
2 and I2.1 evaluated at α = α̂ and β = 0.

Under these conditions the maximum likelihood estimator of πi is π̂i = Ȳ ,
so the expression for ˙̀

2 becomes

˙̀
2 =

N∑
i=1

ai(Yi − Ȳ ) (3.9)

and similarly the expression for I2.1 becomes

I2.1 = Ȳ (1− Ȳ )
{( N∑

i=1

a2
i

)
−

(
∑N

i=1 ai)
2

N

}

= Ȳ (1− Ȳ )
{( N∑

i=1

a2
i

)
−Nā2

}

= Ȳ (1− Ȳ )
{( N∑

i=1

a2
i

)
− 2Nā2 +Nā2

}

= Ȳ (1− Ȳ )
{( N∑

i=1

a2
i

)
− 2ā

( N∑
i=1

ai

)
+Nā2

}

= Ȳ (1− Ȳ )
N∑
i=1

(
a2
i − 2āai + ā2

)
= Ȳ (1− Ȳ )

N∑
i=1

(ai − ā)2 (3.10)

Combining (3.9) and (3.10) we have

S = ˙̀
2I−1

2.1
˙̀
2

=

(∑N
i=1 ai(Yi − Ȳ )

)2
Ȳ (1− Ȳ )

∑N
i=1(ai − ā)2

. (3.11)
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the score test statistic for testing the hypothesis of a linear trend in the
association between genotype and phenotype.

Since S is a score test statistic, it has an approximate χ2 distribution on
p2 = 1 degree of freedom under the null.

To simplify the proof that the Cochran-Armitage trend test is equivalent
to a score test statistic we first derive an equivalent definition of X2

CA.

Definition 3.4. The Cochran-Armitage trend test can be alternatively parametrised

as X2
CA =

N
[P2

j=0 x(j)(Srj−Rsj)
]2

SR
[P2

j=0 x
2
(j)
nj(N−nj)−2

P1
k=0

P2
j=k+1 x(k)x(j)nknj

] .
Proof. Let

W =
2∑
j=0

x(j)(Srj −Rsj) (3.12)

and

V =
SR

N

[ 2∑
j=0

x2
(j)nj(N − nj)− 2

1∑
k=0

2∑
j=k+1

x(k)x(j)nknj
]
. (3.13)

Now

W = S
2∑
j=0

x(j)rj −R
2∑
j=0

x(j)sj

= (N −R)
2∑
j=0

x(j)rj −R
2∑
j=0

x(j)sj

= N
2∑
j=0

x(j)rj −R
2∑
j=0

x(j)(rj + sj)

= N

2∑
j=0

x(j)rj −R
2∑
j=0

x(j)nj

and

V =
(N −R)R

N

[
N

2∑
j=0

x2
(j)nj −

2∑
j=0

x2
(j)n

2
j − 2

1∑
k=0

2∑
j=k+1

x(k)x(j)nknj

]

=
(N −R)R

N

[
N

2∑
j=0

x2
(j)nj −

( 2∑
j=0

x(j)nj
)2]

.
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Thus

W 2

V
=

N
[∑2

j=0 x(j)(Srj −Rsj)
]2

SR
[∑2

j=0 x
2
(j)nj(N − nj)− 2

∑1
k=0

∑2
j=k+1 x(k)x(j)nknj

]
=

N
(
N
∑2

j=0 rjx(j) −R
∑2

i=0 njx(j)

)2
R(N −R)

{
N
∑2

j=0 njx
2
(j) −

(∑2
j=0 njx(j)

)2} (3.14)

which is the X2
CA test as defined in (3.2) and the claim follows.

Theorem 3.5. The Cochran-Armitage trend test X2
CA is equivalent to the

score test statistic S.

Proof. To prove this theorem we use the alternative form of X2
CA = W 2/V

given in definition 3.4. One obvious difference between the score test statistic
(3.11) and the Cochran-Armitage trend test statistic (3.14) are the units of
summation. The score statistic S is calculated by summing over individuals
i = 1, . . . , N while X2

CA is calculated by summing over genotype groups
j = 0, 1, 2. We need to show these two approaches yield equivalent results.

We begin by showing

N ˙̀
2 = N

N∑
i=1

ai(Yi − Ȳ ) =
2∑
j=0

x(j)(Srj −Rsj) = W. (3.15)

Proof.

N ˙̀
2 = N

N∑
i=1

ai(Yi − Ȳ )

= N

N∑
i=1

ai(Yi −R/N)

=
N∑
i=1

ai(NYi −R)

since R =
∑N

i=1 Yi is the number of cases.
Now we sum over genotype groups x(j) instead of individuals i. We

can construct (x(0), x(1), x(2)) such that there exists a x(j) ≡ ai for all i =
1, . . . , N since each is just an encoding of a sample’s genotype. That is, we
can replace each ai with an equivalent x(j), so for each individual i

ai(NYi −R) =
{
ai(N −R) ≡ x(j)(N −R) if individual i is a case

ai(−R) ≡ x(j)(−R) if individual i is a control
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Since for each genotype group x(j) there will be rj cases we will have rj
number of x(j)(N −R) terms in our sum. Similarly for each genotype group
x(j) there will be sj controls, and so sj number of x(j)(−R) terms. Therefore

N ˙̀
2 =

N∑
i=1

ai(NYi −R)

=
2∑
j=0

x(j)

[
rj(N −R) + sj(−R)

]
=

2∑
j=0

x(j)

[
Srj −Rsj

]
= W

as claimed.

Since W = N ˙̀
2 and Var( ˙̀

2) = I−1
2.1 we have Var(W ) = N2I−1

2.1 . To
complete the proof of Theorem 3.5 we must show that Var(W ) = V .

We can consider the marginal totals S and R of the genotype table to be
fixed and thus both r = (r0, r1, r2) and s = (s0, s1, s2) follow multinomial
distributions with probabilities of success nj/N for j = 0, 1, 2 under the null
hypothesis. Now

Var(W ) = Var
( 2∑
j=0

x(j)(Srj −Rsj)
)

= S2Var
( 2∑
j=0

x(j)rj
)

+R2Var
( 2∑
j=0

x(j)sj
)

= S2
[ 2∑
j=0

x2
(j)Var(rj) + 2

1∑
k=0

2∑
j=k+1

x(k)x(j)Cov(rk, rj)
]

+R2
[ 2∑
j=0

x2
(j)Var(sj) + 2

1∑
k=0

2∑
j=k+1

x(k)x(j)Cov(sk, sj)
]
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(Under H0)

= S2
[ 2∑
j=0

x2
(j)R

(nj
N

)(N − nj
N

)
+ 2

1∑
k=0

2∑
j=k+1

x(k)x(j)R
(nk
N

)(nj
N

)]

+R2
[ 2∑
j=0

x2
(j)S

(nj
N

)(N − nj
N

)
+ 2

1∑
k=0

2∑
j=k+1

x(k)x(j)S
(nk
N

)(nj
N

)]

=
S

N2

[ 2∑
j=0

x2
(j)SRnj(N − nj) + 2

1∑
k=0

2∑
j=k+1

x(k)x(j)SRnknj

]

+
R

N2

[ 2∑
j=0

x2
(j)RSnj(N − nj) + 2

1∑
k=0

2∑
j=k+1

x(k)x(j)RSnknj

]

=
SR

N

[ 2∑
j=0

x2
(j)nj(N − nj) + 2

1∑
k=0

2∑
j=k+1

x(k)x(j)nknj

]
= V

and we have shown that Var(W ) = V .
Thus

X2
CA =

W 2

V

=
(N ˙̀

2)2

N2I2.1

=
( ˙̀

2)2

I2.1

= S

and we have shown that X2
CA is a score test statistic as claimed.

Corollary 3.6. X2
CA has an approximate χ2 distribution on 1 degree of

freedom.

Proof. This follows immediately from the preceding theorem. X2
CA is an

equivalent way to write S and S has an approximate χ2 distribution on 1
degree of freedom since it it a score test statistic.

Remark 3.7. Clayton’s derivation of the Cochran-Armitage trend test is
asymptotically equivalent to S.

Proof. Clayton (2008) denotes the score test statistic for testing the effect
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of genotype on phenotype by

SC :=
(
∑N

i=1(Yi − Ȳ )ai)2

1
N−1

∑N
i=1(Yi − Ȳ )2

∑N
i=1(ai − ā)2

=
UA

̂Var(UA)

where again the ai encode genotypes according to some genetic model. Clay-
ton encodes the genotype by ai = 0, 1, 2 for A/A,A/B,B/B respectively.
That is, Clayton only consider the additive version of the Cochran-Armitage
trend test, a somewhat subtle point when reading the paper. It is important
to bear this in mind when applying Clayton’s methods. We know of course
that the ai can be optimally chosen to test a specific genetic model (see
section 3.4.4).

Comparing SC and S we see that they have identical numerators but
differ in their denominators (variances). Clayton sketches his derivation of
the variance of the score test statistic according to the following theory.

Using the score statistic

UA =
N∑
i=1

(Yi − Ȳ )ai

Clayton considers the phenotypes {Yi} to be i.i.d. random variables, with
the genotypes {ai} to be fixed and non-random. Since the variance of a
sum of iid random variables is the sum of the individual variances, Clayton
arrives at

VarC(UA) = Var
( N∑
i=1

(Yi − Ȳ )ai
)

= VY

N∑
i=1

(ai − ā)2

where VY is the variance of Y and the C subscript is to denote Clayton’s
estimator. He then estimates VY by the unbiased estimator

V̂Y =
1

N − 1

N∑
i=1

(Yi − Ȳ )2

to arrive at his score statistic

SC =
(UA)2

V̂arC(UA)

=

(∑N
i=1(Yi − Ȳ )ai

)2

1
N−1

∑N
i=1(Yi − Ȳ )2

∑N
i=1(ai − ā)2
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Thus UA ≡ ˙̀
2 so S and SC only differ in their respective denominators

(variance estimators). It is easily shown that SC is asymptotically equivalent
to the score test statistic S (and thus X2

CA by Theorem 3.5). We have

I2.1 = Ȳ (1− Ȳ )
N∑
i=1

(ai − ā)2

= (Ȳ − Ȳ 2)
N∑
i=1

(ai − ā)2

= (Ȳ − 2Ȳ 2 + Ȳ 2)
N∑
i=1

(ai − ā)2

= (Ȳ − 2
N
Ȳ NȲ + Ȳ 2)

N∑
i=1

(ai − ā)2

=
( 1
N

N∑
i=1

Yi −
2
N
Ȳ

N∑
i=1

Yi +
N

N
Ȳ 2
) N∑
i=1

(ai − ā)2

and noting that since Yi = 0, 1 then
∑N

i=1 Yi =
∑N

i=1 Y
2
i

=
1
N

N∑
i=1

(Y 2
i − 2Ȳ Yi + Ȳ 2)

N∑
i=1

(ai − ā)2

=
1
N

N∑
i=1

(Yi − Ȳ )2
N∑
i=1

(ai − ā)2

=
N − 1
N

̂VarC(UA)

Thus we have

S =
( ˙̀

2)2

Var( ˙̀
2)

=
(UA)2

N−1
N

̂VarC(UA)

=
N

N − 1
× SC

and the two score test statistics are asymptotically equivalent.

Clayton further derives a score test statistic on 2 degrees of freedom
that amounts to a Pearson χ2 test of the 2 × 3 genotype table. We define
Clayton’s 2 degree of freedom score test here as it will be required in section
3.7.
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Definition 3.8. Clayton’s score test for genotype/phenotype associations on
2 degrees of freedom

Let Yi and ai be as in Definition 3.3 and further define

di =
{

1 if individual i is a heterozygote i.e. A/B
0 if individual i is a homozygote i.e. A/A or B/B

We again have

UA =
N∑
i=1

(Yi − Ȳ )ai (3.16)

and

̂Var(UA) =
1

N − 1

N∑
i=1

(Yi − Ȳ )2
N∑
i=1

(ai − ā)2. (3.17)

Now we also have a score statistic for D given by

UD =
N∑
i=1

(Yi − Ȳ )di (3.18)

with corresponding variance

Var(UD) = VD

N∑
i=1

(Yi − Ȳ )2 (3.19)

where VD is estimated by

V̂D =
1

N − 1

N∑
i=1

(di − d̄)2. (3.20)

We must also estimate the covariance of UA and UD which we do by

Cov(UD, UA) = VAD

N∑
i=1

(Yi − Ȳ )2 (3.21)

where VAD is estimated by

V̂AD =
1

N − 1

N∑
i=1

(ai − ā)(di − d̄). (3.22)

The above can then be written into matrix form with

U =
(
UA
UD

)
, V̂ =

(
V̂A V̂AD
V̂AD V̂D

)
N∑
i=1

(Yi − Ȳ )2

giving the score test statistic UT V̂ −1U which under H0 is approximately χ2

distributed on 2 degrees of freedom. We know from Smyth (2003) that this
score test is equivalent to the Pearsonian χ2 test (see section 2.5.1).
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3.6 X chromosome analysis

The X chromosome provides unique challenges for testing associations of
genotype and phenotype. The main difference between the X chromosome
and the autosomes is of course the number of copies each person has —
females having two X chromosomes and males one X chromosome. Males are
termed hemizygous for the X chromosome and their genotypes are written
A/− or B/−. Loci on the pseudo-autosomal region of the X chromosome
can be treated in exactly the same way as autosomal loci so we restrict our
study to those X loci not in the pseudo-autosomal regions.

Tables 3.4, 3.5 and 3.6 introduce various ways we can consider X chro-
mosome data along with the necessary notation for this section.

Genotype
A/A A/B B/B Total

Cases rf0 rf1 rf2 Rf
Controls sf0 sf1 sf2 Sf

Total nf0 nf1 nf2 Nf

Table 3.4: Generic genotype table for female X chromosome data

Genotype
A/− B/− Total

Cases rm0 rm2 Rm
Controls sm0 sm2 Sm

Total nm0 nm2 Nm

Table 3.5: Generic genotype table for male X chromosome data

Allele
A B Total

Cases 2rf0 + rf1 2rf2 + rf1 2Rf
Controls 2sf0 + sf1 2sf2 + sf1 2Sf

Total 2nf0 + nf1 2nf2 + nf1 2Nf

Table 3.6: Generic allele table for female X chromosome data

There are a number of ways to summarise this X chromosome data and
multiple methods of analysis. We could analyse the male and female tables
separately, that is, stratify the X chromosome analysis by sex. This would
of course lead to a loss in power due to stratification. If we can sensibly
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combine the data across sexes we hope to avoid this loss in power. We
discuss several approaches to combining the two tables into a single table.

Firstly, we could take a simple allele counting approach to combine the
results for the male and female samples, as in table 3.7. This is the simplest
approach but, like all allele based tests, is only a valid approach when HWE
holds. Furthermore, males will only have half the impact on the analysis as
the females.

Allele
A B Total

Cases 2rf0 + rf1 + rm0 2rf2 + rf1 + rm2 2Rf +Rm
Controls 2sf0 + sf1 + sm0 2sf2 + sf1 + sm2 2Sf + Sm

Total 2nf0 + nf1 + nm0 2nf2 + nf1 + nm2 2Nf +Nm

Table 3.7: Generic allele table for combined male and female X chromosome
data

Instead of collapsing over alleles, we can collapse over genotypes in a
number of different ways. We could consider each of A/A, A/B, B/B, A/−
and B/− as separate genotypes, and then combine the data like that in
table 3.8.

Genotype
A/A A/B B/B A/− B/− Total

Cases rf0 rf1 rf2 rm0 rm2 Rf +Rm
Controls sf0 sf1 sf2 sm0 sm2 Sf + Sm

Total nf0 nf1 nf2 nm0 nm2 Nf +Nm

Table 3.8: Generic genotype table for combined X chromosome data

Table 3.8 could then be analysed with a χ2 test. However the penalty
paid for such an approach is a loss in power due to the χ2 statistic now
being distributed on 4 degrees of freedom. Ideally, we would like to combine
male and female genotype data in a way that is biologically sensible and
meaningful without too great an increase in the degrees of freedom. Two
such approaches are considered here.

Method 1

Due to the process of X-inactivation only one of the two X chromosomes is
active in females (see section 1.4). It has been thus proposed, for example
in Clayton (2008), that male hemizygotes be treated the same as female
homozygotes for the X chromosome analysis. That is, consider a male A/−
as a female A/A and a male B/− as a female B/B, since males and females
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should be equivalent at such loci in the absence of interactions with other loci
or environmental factors. How we then handle female A/B heterozygotes is
not entirely clear, and will be discussed further in section 3.8.

Method 2

The second approach is to count the number of B alleles present in each
sample. This is equivalent to assuming the effect for an A/− male is the
same as for an A/A female, and similarly a B/− male is the same as a A/B
female. However, it is not clear why an A/B female should be equivalent
to a B/− male, and not an A/− male, since the female is equally likely to
expressed the A allele as the B allele.

Neither of these two approaches is perfect as X-inactivation is far more
complex than the idealised process described here. However, both ap-
proaches are reasonable models that are used in practice.

3.6.1 Current methods for the X chromosome

We review the methods used by the GWAS analysis package PLINK (Purcell
et al., 2007) for X chromosome data. We also introduce some methods
previously studied by Zheng et al. (2007) for X chromosome loci.

PLINK

PLINK offers several methods for the analysis of X chromosome data. Aside
from the allele based test using the combined male and female sample we
will discuss two other approaches available in PLINK.

The first method, and perhaps the most obvious, is to use logistic regres-
sion to model phenotype given genotype and sex. Following the notation in
the PLINK manual (Purcell, 2009), male genotypes are coded as

GENOTYPE =
{

0 if A/−
1 if B/−

while female genotypes are

GENOTYPE =


0 if A/A
1 if A/B
2 if B/B

,

with sex encoded

SEX =
{

0 if male
1 if female

.

We see that male genotypes are encoded so that a B/− male is equivalent
to a A/B female. This leads to the question, described in Method 2, of
why a female A/B should be the equivalent to a B/− male. Furthermore, it
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is not clear from the PLINK manual how genotype/phenotype associations
are assessed; for example, whether it is via a likelihood ratio test, a Wald
test or a score test, though the results should be asymptotically equivalent.

The second method for X chromosome data in PLINK is to apply a stan-
dard association test, such as the CA trend test or a χ2 test of the genotype
table, but using only the female samples. The loss in power associated with
this approach is clear (unless of course all samples are female). The data for
a GWAS is expensive to obtain and so it appears wasteful to use only the
female samples for X chromosome analysis. There are also many diseases
where the sex distribution of cases is skewed and so for a male-biased disease
this method would fare particularly poorly.

Zheng et al’s proposed tests

Zheng et al. (2007) propose a series of tests that combine separate tests
of males and females to make use of all the samples. They also assess the
performance of these tests via a simulation study — to be discussed further
in section 4.1. However I have been unable to find any examples of their
proposed statistics being used on real data outside the original paper.

In the notation of Zheng et al., let Z2
fG be the CA trend test for the

female genotype table 3.4, Z2
m be the ABT for male genotype table 3.5, and

Z2
fA be the ABT for the female allele table 3.6. Zheng et al., then introduce

the test statistics described in table 3.9.

Test Definition and Description Null Distribution
Z2
A The ABT for table 3.7 χ2 on 1 df

Z2
C Z2

C = Z2
m + Z2

fG χ2 on 2 df

ZmfA Z2
mfA =

(√
Nm

Nm+2Nf
Zm +

√
2Nf

Nm+2Nf
ZfA

)2
χ2 on 1 df

ZmfG ZmfG =
(√

Nm
Nm+Nf

Zm +
√

Nf

Nm+2Nf
ZfG

)2
χ2 on 1 df

Table 3.9: Zheng et al.’s proposed tests

In other words, Z2
A is simply the allele based test when combining male

and female samples while the remaining 3 test statistics are various combi-
nations of tests within the male and female samples. For further details on
these 4 statistics, as well as a further two tests designed to be optimal when
the risk allele differs between males and females, we direct the reader to the
original paper (Zheng et al., 2007).
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3.7 Clayton’s corrected tests for X chromosome
loci

Clayton (2008) proposes two new statistics for the analysis of X chromosome
data in GWA studies. These are modifications of the autosomal 1 degree
of freedom CA trend test and 2 degree of freedom χ2 test described in
Remark 3.7 and Definition 3.8 respectively.

Assuming that the allele frequency does not vary between males and fe-
males, a purported benefit to Clayton’s approach is that it avoids the atten-
dant loss in power due to stratification of testing by sex since it combines
male and female samples. However, there is no analysis comparing Clay-
ton’s proposed method to existing methods using simulated (or otherwise)
X chromosome data. We address this in chapter 4.

3.7.1 Derivation of Clayton’s X chromosome test statistics

Clayton (2008) seeks to modify the autosomal tests to make them appro-
priate for X chromosome loci. We first consider the 2 degree of freedom
genotype test (see definition 3.8) to make it appropriate for X chromosome
loci. We assume that due to the process of X-inactivation that male hem-
izygotes are equivalent to female homozygotes. Accordingly, for X loci in
males we code the genotypes ai either as 0 or 2 corresponding to A/− and
B/− respectively, and di should be coded 0.

As Clayton notes, this has several consequences which require modifica-
tions to the statistic defined in 3.8. Namely,

1. Under HWE, if the allele frequency does not vary between sexes, then
in both sexes E(A) = 2P , where P ∈ (0, 0.5] is the frequency of allele
B (the minor allele).

Proof. In females

A =


0 if A/A, w.p. (1− P )2

1 if A/B, w.p. 2P (1− P )
2 if B/B, w.p. P 2

and in males

A =
{

0 if A/A, w.p. (1− P )
2 if B/B, w.p. P

thus E(A) = 2P in both males and females.

Thus, the expectations of UA will remain at 0 under H0, even when
the phenotype, Y , is related to sex.
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2. The variance of A differs between males and females. For example,
under Hardy-Weinberg equilibrium Var(A) = 2P (1 − P ) in females
and 4P (1 − P ) in males. This means that, in general, an alternative
variance estimate of UA must be used.

3. Only females contribute to the dominance score, UD. Without loss
of generality, we assume that samples are arranged so that samples
1, . . . , F are female and samples (F + 1), . . . , N are male. Then,

UD =
F∑
i=1

(Yi − ȲF )di,

where ȲF is the mean of Y in females. Using this formulation UD also
has mean 0 under H0.

With the above points in mind Clayton derives a modified covariance matrix
of U = (UA, UD)T . Firstly, for females the covariance matrix of UA and UD
is estimated by

V̂F =
1

F − 1

F∑
i=1

(
(ai − ā)2 (ai − ā)(di − d̄F )

(ai − ā)(di − d̄F ) (di − d̄F )2

)
, (3.23)

where d̄F is the mean of di in females. Since we are assuming the allele
frequencies are equal between males and females we can use the whole sample
to calculate ā.

Since males have only a single copy of the allele, the covariance matrix
of UA and UD in males is estimated by

V̂M =
(

4P (1− P ) 0
0 0

)
, (3.24)

where P = Pr(B) is the minor allele frequency4.
Again, P can be estimated in the entire sample since we assume the

allele frequency is equal between sexes. We use P̂ = ā/2 to estimate P as it
is simpler to compute than the equally valid estimator of P based on allele
counting.

Combining equations (3.23) and (3.24), our estimator of the covariance
matrix of the 2-vector of scores, U , is given by

V̂ = V̂F

F∑
i=1

(Yi − Ȳ )2 + V̂M

N∑
i=F+1

(Yi − Ȳ )2. (3.25)

4NB: Clearly bVM is invariant to whether P is defined as the major or minor allele
frequency
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As before the score test statistic S(2) = UT V̂ −1U has an approximate χ2

distribution on 2 degrees of freedom under the null hypothesis. As S(2) is
based on the χ2 test on 2 degrees of freedom for the genotype table, S(2)

should be robust to misspecification of the genetic model as it simply tests
for an association between genotype and phenotype rather than a specific
association due to a genetic model (see section 3.4.5).

The 1 degree of freedom test (i.e. the CA trend test adjusted for X
chromosome loci) is given by S(1) = U2

A/V̂11 and again has an approximate
χ2 distribution on 1 degree of freedom under the null hypothesis. As S(1) is
based on the Cochran-Armitage trend test for when the trend is additive, it
should perform best when the true genetic model is additive. The choice of
ai could perhaps be altered to test a recessive or dominant model, but, as we
will see in section 3.8, the genetic models are rather more complicated for X
chromosome loci and so we only consider the ai = 0, 1, 2 case for Clayton’s
statistics. Both Clayton’s 1 and 2 degree freedom tests are invariant to
whether allele A or allele B is the minor allele.

To empirically check the null distribution of U2
A/V̂11 and UT V̂ −1U I sim-

ulated 10,000 male and female genotype tables under the null hypothesis of
no association between genotype and phenotype. Each table was simulated5

using 2000 cases and 2000 controls, evenly split across sexes, with a disease
prevalence of 1/1000 and a minor allele frequency of 0.1.

For each of these 10000 pairs of genotype tables I computed Clayton’s
1 and 2 degree of freedom tests. In figures 3.1 and 3.2 I present quantile-
quantile plots comparing the observed values of the test statistics to their re-
spective theoretical distributions. These plots, generated using the qq.chisq
function in the R package snpMatrix (Clayton and Leung, 2009), include a
95% confidence band to assist in their interpretation.

5For a complete description of the simulation methods see chapter 4
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Figure 3.1: A q-q plot comparing the observed values of Clayton’s 1 degree
of freedom statistic under the null hypothesis against its expected χ2 distri-
bution. The grey band is a 95% confidence band and we see that the plot
is consistent with the test statistic having an approximate null distribution
of χ2 on 1 degree of freedom.
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Figure 3.2: A q-q plot comparing the observed values of Clayton’s 2 degree
of freedom statistic under the null hypothesis against its expected χ2 distri-
bution. The grey band is a 95% confidence band and we see that the plot
is consistent with the test statistic having an approximate null distribution
of χ2 on 2 degree of freedom.
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3.8 Biologically plausible hypotheses for the X chro-
mosome

One of the challenges for testing association on X chromosome loci is choos-
ing biologically meaningful alternate hypotheses. The classical additive,
dominant and recessive genetic models have rather different interpretations
for X chromosome loci.

Under Clayton’s scheme we code male hemizygotes as we would female
homozygotes, and so the genetic risk to a male hemizygote should be iden-
tical to the genetic risk to the equivalent female homozygote. A difficulty
lies in the treatment of the female A/B heterozygote. Do we treat A or B
as the active allele in the heterozygotes?

Unfortunately we do not know which of the X chromosomes in females
is inactivated from genotype data alone. X inactivation is a random process
in each cell and the genotyping is performed on a random subset of cells. It
will therefore display a roughly 50 : 50 distribution of the A and B alleles
in female heterozygotes (see section 1.4).

One approach to tackling this problem would be to randomly assign fe-
male heterozygotes to either of the female homozygous genotypes thereby
mimicking the process of X-inactivation. This would introduce further com-
plexity to the model and so we have instead taken the following approach.

Female X chromosome loci

The three classical genetic models can still be considered to apply for the
homologous pair of female X chromosomes. For example, red-green colour
blindness, Haemophilia A, and fragile X syndrome are all X-linked recessive
diseases while hypophosphatemia is an example of an X-linked dominant
disorder. The genotoypic relative risks for female X chromosome genotypes
under the classical genetic models are given in 3.10.

These models are complicated by the inactivation process unique to the
female X chromosome and so no longer have strictly the same interpretation
as for the autosomal models. It is nevertheless common to assume that
one of the classical genetic models holds for female X chromosome data in
practice (see, for example, Zheng et al., 2007).

Male X chromosome loci

Since we code male hemizygotes as we would female homozygotes, the male
hemizygotes have the same GRRs as their female homozygous counterparts.
We see from table 3.11 that for X chromosome loci in males it does not
matter which genetic model is proposed — for fixed r the GRRs are identical
for all models.
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Genetic model λ0 λ1 λ2

Dominant 1 r r
Additive 1 r+1

2 r
Recessive 1 1 r

Genotype A/A A/B B/B

Table 3.10: Genotypic relative risks for female X chromosome genotypes
under the three classical genetic model

Genetic model λ0 λ2

Dominant 1 r
Additive 1 r
Recessive 1 r

Genotype A/− B/−

Table 3.11: Genetic risk ratios for male X chromosome loci under the three
classical genetic model

Given that the GRRs in males are constant regardless of the model we
would expect the distribution of male cases to be identical regardless of the
genetic model. Therefore, for fixed r, we should have identical power to
detect genotype/phenotype associations in male samples regardless of the
genetic model specified.

This result is consistent with what we would expect when we realise that
for male samples we are just performing an allele based test (there being only
2 genotypes, A/− and B/−) and therefore we have no power to discriminate
between genetic models.

It is clear that to specify a biologically plausible model for X chromosome
data is quite challenging. As with all models, the ones considered here make
a number of simplifying assumptions that may not hold in reality. Our
approach is to note that for male X chromosome data there is no need to
specify a genetic model, and to assume that one of the classical genetic
models holds for female data, with a somewhat altered interpretation.
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Chapter 4

Simulation study

There is currently no study comparing the methods proposed in Clayton
(2008) with those methods already in use for the analysis of X chromosome
GWAS data. To address this issue, and to give a more thorough study of
the existing methods, I performed a simulation study.

I wrote the code for the simulation in the statistical programming lan-
guage R (R version 2.9.0, R Development Core Team, 2009) with plots
produced using the R package lattice (Sarkar, 2009).

There is one previously published simulation study comparing associ-
ation tests for X chromosome loci (Zheng et al., 2007) however Clayton’s
methods are not included. We begin with a brief critique of this paper to
highlight the differences between it and my simulation study.

4.1 Zheng et al’s simulation study

Zheng et al. (2007) examine the power of 6 different tests to detect associ-
ations between genotype and phenotype on the X chromosome in a GWAS
using simulated data. One of the strengths of the study is that it simulates
data not only under HWE but also when HWE does not hold. This allows
the authors to make conclusions on the impact of departure from HWE for
these statistics as well as which test is locally most powerful for various
genetic models.

Zheng et al. consider a simulation with only 200 cases and 200 controls.
As was discussed in section 1.6, a GWAS typically requires sample sizes of
at least 1000 cases and 1000 controls in order to achieve sufficient power
to detect the small genetic effect sizes typical of complex diseases such as
multiple sclerosis. It is therefore unclear how these test statistics would
perform in the context of a realistic study.

Another oddity of the study is the significance level applied in the simu-
lation. The significance level α = 2.772×10−5 is 3 orders of magnitude larger
than the consensus Type I error threshold of α = 10−8 (see section 3.3). This
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is due to the authors performing a Bonferroni correction that only adjusts for
testing of the markers on the X chromosome (α = 0.05/1804 = 2.772×10−5).
It is rare, particularly in a genome-wide association study, that only the X
chromosome SNPs would be analysed for genetic associations. The signifi-
cance level, α, is therefore too liberal and would likely result in many false
positives if applied to real data.

The study also assumes an equal number of males and females in both
the cases and controls. While this may be a reasonable assumption for sim-
ulation purposes, it will not always be true in practise (see the ANZgene
multiple sclerosis study discussed in chapter 5 for example). The disease
prevalence K is set at 0.1, or 1 case per 10 people in the wider popula-
tion. This disease prevalence is too high to be realistic for many “common”
complex disease (see table 4.1), let alone for less common diseases such as
multiple sclerosis with K ≈ 1

1000 (Oksenberg et al., 2008).

Disease Prevalence in Australia
Type 1 diabetes 0.4%
Type 2diabetes 3.52%

Asthma 9.9%
Heart, stroke and vascular disease 5.2%

Table 4.1: A table of some common complex diseases and their estimated
prevalence rates in the Australian population (Source: National Health Sur-
vey: Summary of Results, 2007-2008 (Reissue), Australian Bureau of Statis-
tics).

The simulation is performed assuming a minor allele frequency of 0.1
or 0.3. This does not allow for accurate interpolation or extrapolation of
the results to other minor allele frequencies. We know that the minor allele
frequency varies across the X chromosome (see figure 4.1), and so it is of
interest how these methods perform across the full range of MAFs.

All of the above criticisms are easily addressed by simple alterations to
the simulation parameters. However, there is a more fundamental problem
with the way the data is simulated in Zheng et al. that I believe significantly
biases the results and requires modification. This problem lies in how the
distribution of male genotypes is simulated.

Zheng et al. define the distribution of male genotypes with respect to
the distribution of female genotypes by

Pr(A/− |Case) = Pr(A/A|Case) + Pr(A/B|Case)/2
Pr(B/− |Case) = Pr(B/B|Case) + Pr(A/B|Case)/2
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Figure 4.1: A histogram of minor allele frequencies (MAFs) for all 7359 X
chromosome SNPs that passed quality-control procedures in the ANZgene
GWAS. We see that the MAFs are non-uniformly distributed across the
range of possible values [0.01, 0.5] (Kolmogorov-Smirnov statistic = 0.0451,
p-value = 1.896 × 10−13). The minimum MAF ≥ 0.01 is due to quality-
control procedures — see chapter 5 for further details on the ANZgene data
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and

Pr(A/− |Control) = Pr(A/A|Control) + Pr(A/B|Control)/2
Pr(B/− |Control) = Pr(B/B|Control) + Pr(A/B|Control)/2.

An implication of this, to be discussed further, is that the distribution of
the male genotypes will depend on the genetic model used in the simulation.
This in turn implies that the power we have to detect associations in males
depends on the genetic model specified. This is at odds with our under-
standing that the power to detect associations in males should be identical
regardless of the genetic model (see section 3.8).

To highlight this problem I wrote a simulation in R that uses Zheng’s
method to simulate genotype data in 2000 cases and 2000 controls at a single
X chromosome SNP. Half the cases and half the controls are male and the
data are simulated under an additive, a dominant, and a recessive genetic
model with 1000 replicates for each.

The minor allele frequency is arbitrarily set at 0.3 and the GRR for B/B
females is set at r = 3. Recalling table 3.10 and table 3.11, for females we
have λf = (1, 2, 3) under an additive model, λf = (1, 3, 3) under the dom-
inant model, and λf = (1, 1, 3) under the recessive model. For males, the
GRRs for the A/− and B/− genotypes are given by λm = (1, 3) regardless
of the genetic model. The variable of interest in this simulation is the num-
ber of male cases with the B/− genotype — this should remain constant
regardless of the genetic model according to section 3.8.

The results of the simulation are presented in figure 4.2 and we see
that the distribution of male genotypes clearly depends on the underlying
genetic model when using Zheng’s simulation method. I attempt to correct
this using my own simulation method which I now describe.

4.2 Methods

My simulation methodology is adapted from the autosomal simulation meth-
ods of Slager and Schaid (2001).

Simulation methodology

We consider a single locus on the X chromosome under the assumption of
Hardy-Weinberg equilibrium. Recall that the distribution of genotypes in
the wider population is then given by

g(f) :=
(
g

(f)
0 , g

(f)
1 , g

(f)
2

)
=
(

Pr(A/A),Pr(A/B),Pr(B/B)
)

=
(
(1− pMAF )2, 2pMAF (1− pMAF ), p2

MAF

)
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Figure 4.2: Boxplots showing the differing distributions of male B/− cases
under an additive, dominant, or recessive disease model when using Zheng’s
simulation method. The boxplots show the results of 1000 replicates for
each genetic model.

in females, and

g(m) :=
(
g

(m)
0 , g

(m)
2

)
=
(

Pr(A/−),Pr(B/−)
)

=
(
1− pMAF , pMAF

)
in males, where pMAF is the frequency of the minor allele in the wider
population of males and females (see section 1.4.1). We assume that the
minor allele, B, with population frequency, pMAF , is the causal allele in all
that follows.

Assume a random sample of R cases and S controls (R + S = N) and
consider 2 possible alleles at the loci, A and B, where B is the risk allele.
Given disease status and sex, the distribution of genotypes is multinomial
with parameter vector p(f) = (p(f)

0 , p
(f)
1 , p

(f)
2 ) for female cases and q(f) =

(q(f)
0 , q

(f)
1 , q

(f)
2 ) for female controls.

For males, the distribution of genotypes given disease status is binomial
with p(m) = (p(m)

0 , p
(m)
2 ) in cases and q(m) = (q(m)

0 , q
(m)
2 ) in controls. The

superscripts f,m are to denote females and males respectively while the
subscripts 0, 1, 2 are to remind us that we consider the male hemizygotes
to be equivalent to the corresponding female homozygotes. The values of
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p(f), p(m), q(f), q(m) are related to the genetic model through the following
set of equations.

Firstly, consider the distribution of female genotype. We define

p(f) =

(
f

(f)
0 g

(f)
0∑2

i=0 f
(f)
i g

(f)
i

,
f

(f)
1 g

(f)
1∑2

i=0 f
(f)
i g

(f)
i

,
f

(f)
2 g

(f)
2∑2

i=0 f
(f)
i g

(f)
i

)

q(f) =

(
(1− f (f)

0 )g(f)
0∑2

i=0(1− f (f)
i )g(f)

i

,
(1− f (f)

1 )g(f)
1∑2

i=0(1− f (f)
i )g(f)

i

,
(1− f (f)

2 )g(f)
2∑2

i=0(1− f (f)
i )g(f)

i

)
.

Here f (f)
0 , f

(f)
1 , f

(f)
2 are the penetrances for the female genotypes A/A, A/B,

B/B respectively. The higher the penetrance of a disease for a particular
genotype, the more likely a person with the given genotype will be affected
by the disease. The values of the f (f) are not usually known but can be
estimated from the disease prevalence K and the genotypic relative risks
λf = (λ0, λ1, λ2) = (1, λ1, λ2) using1

f
(f)
0 =

K

g
(f)
2 λ2 + g

(f)
1 λ1 + g

(f)
0

,

f
(f)
1 = f

(f)
0 λ1,

f
(f)
2 = f

(f)
0 λ2.

Thus the distribution of genotypes depends on the GRRs, the disease preva-
lence and the population allele frequencies. Note that this is also how Zheng
et al. define the distribution of female genotypes.

However, as a point of difference to Zheng et al., I define the distribution
of male genotypes by

p
(m)
i =

(
f

(m)
0 g

(m)
0

f
(m)
0 g

(m)
0 + f

(m)
2 g

(m)
2

,
f

(m)
2 g

(m)
2

f
(m)
0 g

(m)
0 + f

(m)
2 g

(m)
2

)

q
(m)
i =

(
(1− f (m)

0 )g(m)
0

(1− f (m)
0 )g(m)

0 + (1− f (m)
2 )g(m)

2

,
(1− f (m)

2 )g(m)
2

(1− f (m)
0 )g(m)

0 + (1− f (m)
2 )g(m)

2

)

where f (m)
0 , f

(m)
2 are the penetrances for the male genotypes A/−, B/− re-

spectively. Similarly to the female definitions, the values of the f (m) can be
calculated from the disease prevalence K and the genotypic relative risks
λm = (λ0, λ2) = (1, λ2) using

f
(m)
0 =

K

g
(m)
2 λ2 + g

(m)
0

f
(m)
2 = f

(m)
0 λ2.

1There is an error in Slager and Schaid’s definition of f0 (Susan Slager, personal com-
munication). This is the corrected version.
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We have seen in section 4.1 that by applying Zheng et al.’s methodology
the distribution of male genotypes depends on the genetic model. More
specifically, we can now see that this is caused by the female heterozygous
GRR, λ1 (see Remark A.2 in the appendix).

To confirm that my simulation method does not suffer from the same
flaw as that of Zheng et al., I repeat the simple simulation of section 4.1,
but this time using my simulation methodology. We see in figure 4.3 that
the distribution of male B/− cases is now identical, regardless of the genetic
model used in the simulation.

ADD DOM REC

52
0

54
0

56
0

58
0

60
0

62
0

Number of male B/- cases
 My simulation method

Figure 4.3: Boxplots showing the identical distributions of male B/− cases
under an additive, dominant, or recessive disease model when using my
simulation method. The boxplots show the results of 1000 replicates for
each genetic model.

Numerical example

We now work through a short example, using the equations of section 4.2, to
give a sense of how the genotype frequencies will vary between the case and
control cohorts in males and females. Consider a disease with prevalence rate
K = 1/1000 under an additive genetic model with r = 3, i.e. λf = (1, 2, 3)
and λm = (1, 3). Choosing pMAF = 0.05 we have the population genotype
frequencies

g(f) = (0.9025, 0.095, 0.0025)

g(m) = (0.95, 0.05).
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Having defined the population level parameters we can now calculate the
genotype frequencies in the case and control cohorts using the equations of
section 4.2. These are

p(f) = (0.820, 0.173, 0.007)

q(f) = (0.903, 0.095, 0.002)

p(m) = (0.905, 0.095)

q(m) = (0.950, 0.050)

to 3 decimal places.
Sensibly, the case cohort’s genotype frequencies, p, now differ noticeably

from the population genotypes frequencies, g, while the control cohort’s
genotype frequencies, q, remain close to the population genotype frequencies,
g.

Simulation parameters and test statistics

Having established the validity of my simulation method, we now define
the various test statistics whose performance we compare under different
experimental designs. The eight tests we compare in my study, and the
reasons for their inclusion, are:

• Clayton’s 1 and 2 degree of freedom tests defined in section 3.7; de-
noted S(1) and S(2) respectively in the simulations. These two tests
were proposed in the paper that motivated the topic of my thesis.

• Z2
A, Z

2
C , Z

2
mfA and Z2

mfG defined in section 3.6.1 and previously studied
by Zheng et al. We investigate these here under a broader set of
parameters and uncouple the dependence between the distribution of
male genotypes and genetic models. The allele based test, Z2

A, is the
simplest test and should perform well given that we are simulating
under HWE. The remaining three tests are novel ways of combining
results across sexes.

• The χ2 test on 2 degrees of freedom for the female genotype table or
Cochran-Armitage trend test using only the female samples; denoted
by χ2

female and CAfemale respectively in the simulations. When using
PLINK these are the default association tests for X loci if the user
performs a “näıve” analysis. Indeed, PLINK’s CAfemale test is used by
the ANZgene consortium to test for association on the X chromosome
in their GWAS on multiple sclerosis (see Australia and New Zealand
Multiple Sclerosis Genetics Consortium (ANZgene), 2009, Methods).

There are obviously many parameters that can be altered in such simula-
tions. To keep things as simple as possible we consider a sample consisting
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of 2000 cases and 2000 controls, in line with recommended GWAS sample
sizes. The genome-wide significance level is fixed at α = 10−8, in line with
the consensus Type I error rate discussed in section 3.3. The prevalence of
the disease is set at K = 1

1000 which is the estimated prevalence of multiple
sclerosis in people of northern European ancestry2 (Oksenberg et al., 2008)
and is a more realistic prevalence rate for complex genetic diseases than
K = 0.1.

These parameters are kept fixed while we explore the effects of altering
the parameters in table 4.2 on the performance of the various test statistics.

Parameter Levels
Proportion of cases female 1, 0.9, 0.75, 0.6, 0.5, 0.4, 0.25, 0.1, 0
Proportion of controls female Fixed at 0.5 or matched to the propor-

tion of female cases
Genetic Model Additive (ADD), dominant (DOM) or

recessive (REC)
GRR λf = (1, λ1, λ2),λm = (1, r) defined by

the genetic model with λ2 = r = 1.5, 2.5
or 3

MAF in wider population 0.01, 0.02, . . . , 0.49, 0.50

Table 4.2: Parameters varied in the simulation study

If we consider each level of the minor allele frequency separately, this
gives a total of 9 × 2 × 3 × 3 × 50 = 8100 experimental designs to assess
the performance of the 8 test statistics on. We also report the results under
the null hypothesis of no association, corresponding to λf = (1, 1, 1),λm =
(1, 1), to investigate the Type I error rates of the 8 tests.

All 8 tests are similar in computational complexity and so the criteria
on which we rank them is empirical power. The empirical power of a test
is defined as the number of times the test gives a genome-wide significant
result divided by the number of replications for each set of parameter levels.

The tests implemented in my simulation study do not form an exhaus-
tive list of association tests for X chromosome loci. However, our particular
interest with this study is to compare Clayton’s proposed test statistics to
those methods previously studied or currently in use. Some test proce-
dures (such as PLINK’s logistic regression approach and the proposed GLM
approach with sandwich estimates of the covariance matrix from Clayton
(2008)) could not be included in my simulation due to computational con-
straints. Both of these methods require the fitting of at least one GLM per
simulation replicate which greatly increases the simulation run-time.

2All the samples used in the ANZgene multiple sclerosis GWAS are all off European
descent hence my choice of K
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As it is, my simulation takes approximately 150 hours when run as a
single process on a unix server running 4 × Quad Core CPUs @ 2.93GHz
with 128GB of RAM. This run-time can be reduced by splitting the simula-
tion across multiple processors but at the expense of increased programming
complexity. I satisfied myself with an overall runtime of approximately 50
hours for the simulation with a common 50 : 50 control cohort, and a sim-
ilar amount of time for the simulation with the case and control numbers
matched by sex.

4.3 Results

These simulations clearly produce a large amount of data and so it requires
some thought in order to present the results as clearly as possible. I will
present and interpret plots of the power achieved by each test statistic for
each “experimental design”, e.g. an additive model with r = 2.5 using
a common 50 : 50 control cohort. My aim is to explain the significant
trends across experimental designs rather than focus on the smaller details
of individual plots. That said, I will begin with a discussion of a single plot;
each plot is of identical format and so this example will explain the key
features shared by all the graphs.

Figure 4.4 is our example plot. It shows the empirical power for all 8
test statistics under a recessive disease model with r = 2.5 and both the
case and control cohorts with a 50 : 50 sex ratio. We define the sex ratio
by females : males with 100 : 0 and 0 : 100 defined as all female and all
male respectively. The key features of this example plot are described in the
caption accompanying figure 4.4.

In what follows we do not include the results for the 100 : 0 all-female
or 0 : 100 all-male cohorts. The test statistics are designed for mixed-sex
samples and are not appropriate when either cohort, or indeed both, are
made up of a single sex. The single-sex simulations were designed as control
datasets to ensure the simulation behaved as intended and the results are
not of interest to us here.

There are far too many experimental designs to give a commentary on
each resulting plot individually. Indeed, to do so would be to ignore the more
interesting and relevant “bigger picture”. For this reason we present graphs
together in blocks of 7 where each block is a single experimental design.
We also exclude the individual points of each power curve and instead use
a simple coloured line to display each test’s power. The individual marks
simply clutter the figure and make the distinctions between test statistics
less clear.

There is some “wriggly-ness” in the line graphs as a result of simulation
variance — applying a smoothing spline to remove this wriggly-ness was
investigated but was found to distort the true results and was thus more
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Recessive model with r = 2.5
 Case and control sex ratio both 50:50
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Figure 4.4: For each test statistic we can read off its power for a given
minor allele frequency (MAF). In this example we see that S(2) is uniformly
most powerful across the range of MAFs. Here the risk associated with
the recessive genotype is so large that most tests achieve maximum power
for a low MAF. Note that both female only tests, CAfemale and χ2

female,
perform considerably worse than the 6 tests that use both male and female
samples. This is to be expected and is a consistent result in all except the
most extreme simulation set-ups.
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hindrance than help.
We first discuss the results of the simulation study using a common

50 : 50 control cohort. There is little difference between the results for the
r = 2.5 and r = 3 simulations, and so the r = 3 results are not shown here.
In the r = 3 case the power curves are simply “compressed” versions of the
r = 2.5 curves that have been shifted to the left, i.e. each test has more
power for lower MAFs.

4.3.1 50 : 50 control cohort

Ideally the cases and controls in a GWAS should be matched by sex but it
is increasingly common to acquire control samples from a “genome-bank”
due to the high costs of collecting and genotyping samples (McCarthy et al.,
2008). These genome-bank cohorts typically consist of a roughly 50 : 50
split of males and females. It is therefore of interest to analyse how these
tests would perform in a GWAS using the common 50 : 50 control cohort.

Type I error rates of tests

The Type I error rate of a test is the proportion of times the test reports
a result that would lead us to falsely reject the null hypothesis. It is also
known as the size of the test. To analyse the size of each test we simulate data
under the null hypothesis of no association between genotype and phenotype.
For each test we then calculate the proportion of times the test reports a
significant result, where significance is given by the nominal level of α = 0.05.

This simulation is done over the range of minor allele frequencies and case
cohort sex-ratios, with each experimental design replicated 10,000 times. A
well behaved test should therefore return significant results only 500 times
under each experimental design for a Type I error rate of 0.05.

The results for each test, across the range of case cohort sex-ratios, are
summarised in figure 4.5. Each box plot represents the distribution of Type
I errors for the range of minor allele frequencies, and so ideally each plot
should be tightly centred around the nominal value of 0.05. In each plot
the number in the header, highlighted in orange, refers to the proportion of
cases that are female. The figures should thus be read from left to right,
top to bottom, to see how the increase in proportion of females in the case
cohort effects the results.
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Empirical Type I error rates of tests
Control sex ratio = 50:50
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Figure 4.5: We see that the Type I error rates of all but the S(2) test
are centred around the nominal 0.05 value (green line). For strongly male-
biased case cohorts the S(2) test falsely rejects the null less often than its
counterparts, i.e. S(2) is a conservative test. The S(2) test is also slightly
conservative for the most highly female-biased case cohort. These results do
raise questions about the appropriateness of the approximate χ2 distribution
for S(2). Note that for graphical purposes test names have been abbreviated:
CAf ≡ CAfemale and χ2

f ≡ χ2
female
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Further to the discussion of figure 4.5, R’s in-built function chisq.test
(which is used in my simulation for some tests) will produce warnings when
the appropriateness of the approximate χ2 distribution is in doubt.The way
the simulation is currently coded these warnings are noted but no action is
taken. The results of this can be seen in the larger variation of the Type I
error rate for the χ2

female test. This is due to a low number of counts of a
particular genotype/phenotype combination. This is typically only observed
in the simulations with a minor allele frequency 0.01 − 0.05 (results not
shown).

In summary, we now know that for a strongly sex-biased case cohorts,
in conjunction with a common 50 : 50 control cohort, that the asymptotic
distribution of the S(2) statistic may not be appropriate. We also note that
the S(2) statistic is a conservative test, though this of much less concern. We
therefore suggest further study of the approximate distribution of the S(2)

statistic. An alternative approach to relying on the approximate distribution
of the test would be to use permutation testing to get empirical p-values,
but this is not pursued here. All other tests are of the correct size.

Additive models

Recall that under the additive model the female genotypic relative risks are
λf = (1, r+1

2 , r) and the male genotypic relative risks are λm = (1, r).
Figure 4.6 and figure 4.7 are the plots for the r = 1.5 and r = 2.5

simulations. Again the figures should be read from left to right, top to
bottom, to see how the distribution of sexes in the case cohort effects the
power to detect associations for X chromosome SNPs.
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Additive model with r = 1.5
 Control sex ratio = 50:50
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Figure 4.6: Recall that the number highlighted in orange in the header of
each plot corresponds to the proportion of the case cohort that is female.
The immediately apparent trend is that the power is greater for case cohorts
that have a higher proportion of males. This is a common theme and will be
discussed further. Clayton’s 1 degree of freedom test, S(1), is consistently
among the top 2 tests. We have less than 50% power to detect associations
in most designs and particularly poor performance for low MAFs. The
female only tests, CAfemale and χ2

female, have power ≤ 3%, regardless of
the proportion of cases that are female. We note that for the female-biased
case cohorts that the Z2

mfG test is most powerful. This result will be relevant
in the case study.
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Additive model with r = 2.5
 Control sex ratio = 50:50
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Figure 4.7: Increasing the genetic risks to r = 2.5 produces an immediate
increase in the power to detect associations. In all but the most extremely
female-biased case cohorts, maximum power is achieved for a MAF ≤ 0.1
and maintained thereafter. Clayton’s tests are again amongst the best, but
all the tests have high power and are fairly indistinguishable, aside from the
less powerful CAfemale and χ2

female tests. The female-to-male ratio of the
case cohort has far less impact on the results than for the r = 1.5 design in
figure 4.6. Note the decay in power for the female-only tests, CAfemale and
χ2
female, for the higher MAFs.
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We see from figures 4.6 and 4.7 that Clayton’s 1 degree of freedom test,
S(1), is amongst the most powerful tests for all additive simulation set-ups. It
therefore suggests itself as the best test for X chromosome loci when the true
genetic model is additive. Indeed, by using Clayton’s choice of a = (0, 1, 2),
S(1) is designed to test for additive effects so this is an expected result.

The simplest test, the allele based test Z2
A, also performs quite well

across additive simulations. However, recalling that the data were simulated
assuming HWE this is not surprising and we must bear in mind the usual
caveat that Z2

A is not reliable when HWE fails to hold. The decay in power
for the female-only tests with high minor allele frequencies is an interesting
result. This trend will be repeated, even more dramatically, in later results
for the dominant model.

Recessive model

Recall that under the recessive model the female genotypic relative risks
are λf = (1, 1, r) and the male genotypic relative risks are λm = (1, r).
Figures 4.8 and 4.9 are the blocks of plots for the r = 1.5 and r = 2.5
simulations.

83



Recessive model with r = 1.5
 Control sex ratio = 50:50
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Figure 4.8: Again we see that the power increases with the proportion of
the case cohort that is male. The power curves are not dissimilar to those
for the additive model with r = 1.5, shown in figure 4.6. However, we see
that S(2) achieves the highest power, except in strongly male-biased case
cohorts. Zheng et al.’s Z2

C , Z
2
mfA and Z2

mfG tests perform noticeably worse
than Clayton’s tests. Except in the strongly male-biased case cohorts, we
have little power to detect associations for all but the highest MAFs, and
even then the maximum power is only 35%− 60%.
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Recessive model with r = 2.5
 Control sex ratio = 50:50
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Figure 4.9: Increasing the genetic risk to r = 2.5 again has the obvious effect
of increasing our power to detect associations. What is interesting here is
the narrow range of MAFs between having “little power” and “maximum
power”. We generally either have very good prospects of detecting the as-
sociation, or very little hope, with not much in between. This is in contrast
to the much more gradual increase in power for the recessive model with
r = 1.5, shown in figure 4.8. S(2) is again amongst the top 2 most powerful
tests. However, for strongly female-biased case cohorts we see an advantage
in using Z2

C , particularly for low MAFs.
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The results for the recessive model share a few points in common with
the results for the additive model, such as:

• An increase in power with an increase in the proportion of cases that
are male

• An increase in power as the genetic risk r increases

• Clayton’s tests consistently amongst the best performing test statis-
tics.

S(1) does perform slightly worse for the recessive model than for the additive
model. This is to be expected since S(1) is designed to detect additive genetic
effects, not recessive genetic effects. However, S(1) still performs better than
most other tests for the recessive simulations. Clayton’s 2 degree of freedom
test, S(2), is designed to be robust to the underlying genetic model and it
shows its strength here outperforming S(1) for all 7 plots.

Dominant model

Recall that under the dominant model the female genotypic relative risks are
λf = (1, r, r) and the male genotypic relative risks are λm = (1, r). The test
statistics behave quite differently for the dominant model when compared
with the additive and recessive models. Rather than the power for each test
increasing more-or-less monotonically across the range of MAFs, under the
dominant model there is a distinct decay in the tails for the power curves.
This will be discussed further after we examine the plots for the r = 1.5 and
r = 2.5 dominant simulations in figures 4.10 and 4.11.
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Dominant model with r = 1.5
 Control sex ratio = 50:50
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Figure 4.10: In all but the most male-biased case cohorts we see maximum
power is achieved for a MAF ≈ 0.25 − 0.35, with power then decaying for
higher MAFs. We see that S(1), S(2), Z2

A typically outperform the remaining
tests. Maximum power is limited, ≤ 60% in most cases, with particularly
poor performance for low MAFs.
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Dominant model with r = 2.5
 Control sex ratio = 50:50
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Figure 4.11: With the r-value increased to 2.5, the effect size is large enough
to mostly “overcome” the decay in the tails of the power curves seen in
figure 4.10. Indeed the effect size is so large that even the female-only tests
achieve maximum power for 6 out of the 7 plots. The power curves for the
remaining tests are indistinguishable — all achieving maximum power for
very low MAFs — meaning that the choice of test for this genetic model is
less important than in others since we have very high power using any of
S(1), S(2), Z2

A, Z
2
C , Z

2
mfA or Z2

mfG.
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The lack of monotonicity in the power curves for the dominant model,
most pronounced for small r-values, is a somewhat surprising result. My
first reaction was to return to my code to check for any errors but none were
found.

I have not been able to entirely satisfy myself with a suitable explanation
for this decay in power. However, this decrease in power for higher minor
allele frequencies is not entirely without precedent. An example of this
can be seen in the work of Lettre et al. (2007) on autosomal association
tests, though it is admittedly a less dramatic result. There are a number
of differences between the parameters in effect in Lettre et al.’s simulation
study and mine, however I believe the point remains. Figure 4.12 is a plot
from Lettre et al. (2007) showing a decrease in power for the additive version
of the Cochran-Armitage trend test when the MAF is high and the true
genetic model is dominant.

Figure 4.12: For an autosomal dominant genetic locus we see the additive
version of the Cochran-Armitage has its lowest power for the highest minor
allele frequency (MAF). We have seen a similar decrease in power in my
simulations of X chromosome dominant genetic loci. This figure is adapted
from figure 1B of Lettre et al. (2007).

To properly understand this result requires further work, however I be-
lieve it is due in part to the fact that for higher MAFs the “risk” genotypes
are very common even in those unaffected by the disease. For example,
under a dominant model with r = 1.5, pMAF = 0.45 and K = 1/1000, the

89



frequencies of genotypes are given by

p(f) = (0.2243, 0.5505, 0.2252)

p(m) = (0.4490, 0.5510)

q(f) = (0.3026, 0.4949, 0.2025)

q(m) = (0.5501, 0.4499).

The female “risk” genotypes A/B,B/B make up 70% of the female control
genotypes (compared to 77% of female cases) and the male risk genotype,
B/−, makes up 45% of the male control genotypes (compared to 55% of
male cases). The people in the case cohort do not have the disease yet there
is a similar percentage of people with the risk genotype to the case cohort.
It is therefore harder to separate cases and controls using the information
of their genotype at this locus alone and so we have less power to detect
associations.

For larger r-values the distribution of genotypes in the case cohort be-
comes highly skewed in favour of the “risk” genotypes A/B,B/B,B/−. For
example, if we use the exact same pMAF and K as before, but increase the
r-value to r = 3 we get

p(f) = (0.1263, 0.6200, 0.2537)

p(m) = (0.2895, 0.7105)

q(f) = (0.3027, 0.4949, 0.2024)

q(m) = (0.5503, 0.4497).

We see that while the distribution of genotypes in the control cohort remains
almost identical, there are now 87% of female cases and 71% of male cases
with the risk genotypes. It is thus far easier to separate the cases and
controls based on their genotype at this loci than it was in the previous
example and so we have more power to detect associations when the r-value
is large.

4.3.2 Matching case and control cohorts by sex

The current implementation of some of the tests will at times cause the sim-
ulation to crash for the highly sex-biased cohorts, e.g. the 90 : 10 case and
control design. Unfortunately this means I have not been able to study the
sex-matched experimental designs in as greater detail as the 50 : 50 control
cohort design. The simulations of the recessive genetic model are particu-
larly problematic and never ran to completion in my study. I believe this is
due to difficulties inverting the V̂ matrix in Clayton’s tests — V̂ is singular,
or near singular (ill-conditioned), for the strongly sex-biased cohorts where
case and control numbers are matched by sex. Consequently I only present
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simulation results for the additive and dominant genetic models under the
sex-matched experimental design. There exist computational methods to
handle the situations where V̂ is ill-conditioned, or singular, but these are
not pursued here.

So that I could produce and analyse simulations where case and control
numbers are matched by sex, the number of replications was reduced to
1000, down from 10000. The estimated power of each test is of course more
variable as a result, and this can be seen in the more “wiggly” power curves
in the following plots.

In the header of each plot, highlighted in orange, is now the proportion
of cases and controls that are female. Again, the r = 3 results are very
similar to the r = 2.5 results and so are not presented here.

Type I error rates of tests

As we did for the common 50 : 50 control cohort, we analyse the Type
I error rate of each test across minor allele frequencies. These results are
summarised in the box plots of figure 4.13. The key point from these plots
is that the Type I error rates are all centred around the nominal level of
0.05. We therefore feel more confident in the appropriateness of these tests
when the cases and controls are matched by sex, rather than when we use
a common 50 : 50 control cohort.
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Empiricial Type I error rates of tests
Cases and controls matched by sex
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Figure 4.13: Each box plot represents the distribution of Type I error rates
of a test across the range of MAFs 0.01−0.5. All these box plots are correctly
centred around the nominal level of 0.05 (green line). Further investigation
reveals that the outliers in these plots correspond to simulations with low
MAFs (results not shown).
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As before, the loci with the lowest minor allele frequencies require some
extra care to ensure there are sufficient counts in each genotype/phenotype
category. Without this, a test statistic’s approximate distribution may not
hold, particularly if using the χ2

female test.

Additive model

The simulation parameters are as for the additive model in the 50 : 50 control
cohort simulations described in section 4.3.1. The results for the r = 1.5
and r = 2.5 simulations are shown in figures 4.14 and 4.15 respectively.
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Additive model with r = 1.5
Cases and controls matched by sex
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Figure 4.14: As the proportion of males in the whole sample increases we
have more power to detect associations. There is again poor performance
for low MAFs and the female-only tests have negligible power to detect
associations. The two best performing tests are S(1) and Z2

mfG, though
even these have less than 50% power for the majority of loci.
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Additive model with r = 2.5
Cases and controls matched by sex
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Figure 4.15: These results are very similar to those for the additive
model with r = 2.5 and using a common 50 : 50 control cohort (see fig-
ure 4.6). We have “maximum power” for low MAFs in each plot when us-
ing S(1), S(2), Z2

A, Z
2
C , Z

2
mfA or Z2

mfG. The female-only tests simply cannot
match these other tests even when up to 90% of samples are female.
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What is interesting from these simulations is that the results are very
similar to those for when a common 50 : 50 control cohort is used. This
suggests that the matching of case and control numbers by sex may be less
important than it first appears. The S(1) statistic is again the top performing
test here, as to be expected for additive simulations.

Dominant model

The simulation parameters are as for the dominant model in the 50 : 50
control cohort simulations described in section 4.3.1. The results for the r =
1.5 and r = 2.5 simulations are shown in figures 4.16 and 4.17 respectively.
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Dominant model with r = 1.5
Cases and controls matched by sex
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Figure 4.16: The difference between using one of S(1), S(2), Z2
A or one of

Z2
C , Z

2
mfA, Z

2
mfG is far less than when using the common 50 : 50 control

cohort. This suggests that Zheng et al.’s tests perform better when case
and control numbers are matched by sex. We again see the decay in power
for all tests at higher MAFs. The maximum power for the best test, S(2),
is consistently around 60% regardless of the proportion of samples that are
female.
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Dominant model with r = 2.5
Cases and controls matched by sex
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Figure 4.17: These results are also quite similar to the dominant model with
r = 2.5 where a common 50 : 50 control cohort is used (see figure 4.11). We
have “maximum power” for very low MAFs and so we should be able detect
any high-risk dominant X chromosome loci in real data with ease.
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The power curves for each test (excluding the female-only tests) remain
quite similar for the dominant model across the proportion of samples that
are female. This is in contrast to when a common 50 : 50 control cohort
is used; in that situation the power steadily decreases for each test as the
proportion of male cases increases. These results show that we typically
have more power to detect a dominant genetic model when the case and
control cohorts are matched by sex but that this is only noticeable for low
r-values. As the r-value increases the dominant genetic effect becomes so
large that it can be detected by most tests regardless of the female-to-male
ratio.

4.4 Discussion and conclusions of the simulation
study

The results of the simulation study can be used to help choose the best statis-
tic for testing genotype/phenotype associations in X chromosome GWAS
data. Several key points have been have been illustrated in the simulation
study, some that are more intuitively clear and obvious than others.

Firstly, discarding males from the analysis will lead to a large drop in
power and is a wasteful strategy. We have more power to detect X chromo-
some genotype/phenotype associations in males as there are only 2 geno-
types for male X chromosome loci, compared to the 3 genotypes for females.
However, in testing males we have no power to discriminate between ge-
netic models; this requires female samples. This suggests using all samples
to detect associations, and when an association is found, to use the female
samples to discriminate between genetic models.

It is clear that PLINK’s “default” female-only tests are a poor choice
to analyse X chromosome GWAS data — in every simulation considered
here we have more power when using a test that combines male and female
samples. PLINK includes other methods that do make use of both male and
female samples to analyse X chromosome data, and these should be favoured
when using this software. However, these methods are not the default option
in PLINK and so users can easily apply the female-only tests unwittingly.

Secondly, we have little power to detect associations for the lowest mi-
nor allele frequencies, particularly when the allele confers only a small risk.
Therefore it will be more difficult to identify these “rare” alleles using any
of the methods considered. Indeed, the current crop of GWA studies are
not the optimal experiments to identify these rare variants, though progress
will be made as technology advances (see Altshuler et al., 2008, for further
discussion on the difficulties in identifying rare variants involved in human
diseases).

Finally, we discuss some practical matters. Clayton’s tests are consis-
tently among the best overall methods of those considered here. Clayton’s
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1 degree of freedom test, S(1), performs surprisingly well even when the
true genetic model is not additive. Clayton’s 2 degree of freedom test, S(2),
is even more robust to misspecification of the true genetic model and has
consistently high power.

The allele based test, Z2
A, also has good power to detect associations for

all genetic models, but is of course only applicable when HWE holds. A
standard quality-control procedure in GWA studies is to remove SNPs that
depart too far from the HWE assumption, so this may not be the constraint
it first seems. Zheng et al.’s tests have more power when the case and control
numbers are matched by sex but there are few situations when one of these
is the optimal choice of test.

If we are to promote an overall “best test” from the simulations then it
would be one of Clayton’s S(1) or S(2). Given the additional complexities
of specifying a sensible biological model for the X chromosome, discussed
in section 3.8, the robustness of S(2) makes it quite appealing. However,
we have seen that there may be problems with the asymptotic distribution
of S(2) when using a highly-male biased case cohort in conjunction with a
common 50 : 50 control cohort. We suggest further study of the distribution
of S(2) and the investigation of alternative evaluation approaches such as
permutation testing to assuage these concerns.

A typical GWAS will have a reasonable balance of males and females in
both case and control cohorts, unless the disease has a sex bias (e.g. multiple
sclerosis). Clayton’s S(1) or S(2) statistics will allow us to confidently detect
associations, across a range of genetic models, for such a balanced study.

The plots in section 4.3 can also assist in choosing which test to use for
a particular experimental design. However, the best way to choose which
test statistic to analyse X chromosome GWAS data with is to enter the
study’s design into a simulation program such as mine. The simulation code
I have written can easily handle a range of experimental designs (such as
an unbalanced number of cases and controls), different genetic models, and
the addition of new test statistics. A researcher can then use the simulation
results to select the best test statistic for their particular experiment and
estimate the power they will have to detect associations in their data.

4.4.1 Extensions

Clayton (2008) only considers an additive version of S(1), that is with a =
(0, 1, 2). There appears to be no reason not to consider different choices of ai,
corresponding to a recessive or dominant version of the 1 degree of freedom
test, but these have not been investigated here due to time constraints. In
line with the autosomal simulation results of Lettre et al. (2007), we would
expect the dominant and recessive tests to perform well for their respective
genetic models but to perform poorly when the test does not reflect the true
underlying genetic model.
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Other tests that have not been included due to computational and time
constraints include the Cochran-Mantel-Haenszel test (implemented in PLINK),
the logistic regression of PLINK, and similar GLM type approaches pro-
posed in Clayton (2008). These methods all warrant further study. Fol-
lowing Zheng et al. (2007) it would be nice to repeat this simulations with
a variety of departures from HWE to see how this assumption effects the
performance of the various tests.

The simulation study allows us to analyse the various tests in a controlled
environment. In this setting the data are not subject to the noise that real
data displays and so we have a fairer background to compare the tests on.
While this is obviously advantageous, the simulation study has its limits.
For one, the simulation cannot capture the various nuances of true biological
data. The simulation makes assumptions such as HWE and the equivalence
of certain genotypes that may not be true in reality.

Ultimately the best evaluation of these methods would be to compare
their performance on a real data set that contains an X chromosome locus
that is truly associated with a phenotype. This sort of “gold standard” data
set is not available to me, however I do have access to data from the ANZgene
GWAS of multiple sclerosis that may contain interesting X chromosome loci.
We discuss the reasons why the X chromosome is a good candidate region
for multiple sclerosis risk loci in the following case study.

101



Chapter 5

Case study

5.1 Multiple sclerosis and GWA studies

The data for my case study comes from the Australia and New Zealand
Multiple Sclerosis Genetics Consortium (ANZgene) who published a GWAS
of multiple sclerosis (MS) in July 2009. I begin with an explanation of
MS and what is currently known about the underlying genetics of it, a
description of the ANZgene study and its results, and then carry out an
analysis of the X chromosome data from the ANZgene study.

What is multiple sclerosis?

Multiple sclerosis (MS) is a disease that affects the central nervous system
and can, to varying degrees, interfere with the transmission of nerve impulses
throughout the brain, spinal cord and optic nerves. It affects an estimated
18,000 Australians and some 2,500,000 worldwide, yet we do not understand
why some people are susceptible, and others are not, nor why there is such
large variation in the severity of the symptoms for those affected.

Having a first-degree relative such as a parent or sibling with MS in-
creases an individual’s risk of developing the disease several-fold above the
risk for the general population (source: MS Australia). Unlike “pure” ge-
netic diseases such as cystic fibrosis and Huntington’s disease, multiple scle-
rosis is a complex disease with both genetic and environmental risk factors.
Hence there are genetic factors at play, but how many and their associated
risks are still unknown.

MS can be loosely divided into two forms: relapsing remitting (RR)
and primary progressive (PP), which are the mild and extreme ends of
the spectrum respectively. Interestingly there is an increased risk in fe-
males (Oksenberg et al., 2008) which suggests a possible role for the X
chromosome in determining susceptibility. The increased risk in females is
particularly evident for the more common relapsing-remitting form, with
an estimated 3.65 : 1 female-to-male ratio for the RR form (Source: ANZ-
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gene supplementary material1 http://www.nature.com/ng/journal/v41/
n7/suppinfo/ng.396_S1.html). For the primary-progressive form this sex
ratio is reversed with PPMS being more common in males than in females.
However, to date no risk-assocated loci for MS have been identified on the
X chromosome. A comprehensive review of the genetics of MS can be found
in Oksenberg et al. (2008).

The recent GWAS published by the Australia and New Zealand Mul-
tiple Sclerosis Genetics Consortium identified several new risk-associated
loci (all located on the autosomes), as well as replicating the well-known
human leukocyte antigen (HLA chromosome 6p22) association and several,
more recently discovered MS loci (International Multiple Sclerosis Genetics
Consortium (IMSGC), 2007). We hope that by using refined analysis meth-
ods that we may discover in the ANZgene data new MS risk loci on the X
chromosome.

5.1.1 Description of the ANZgene study

The Australia and New Zealand Multiple Sclerosis Genetics Consortium
(ANZgene) is a team of more than 40 investigators from 11 institutions in
Australia and New Zealand. In the discovery phase of the study the group
genotyped 2,000 people with MS of European-ancestry from Australia and
New Zealand. These 2000 cases were genotyped on the Illumina Infinium
Hap370CNV array, described in section 1.5.1. DNA for genotyping was
derived from a blood or saliva sample. As a part of the study the quality of
the two DNA sources were shown to be equally good (Bahlo et al., 2009).

It was decided to acquire controls from two genome-banks to maximise
the acquisition of genotypes for MS cases. The control samples are all of
European-ancestry and were obtained from two genome-banks in the United
Kingdom and United States. For a full description of the cohorts and the
quality control procedures we refer the reader to the original paper.

Since the control cohort genotypes are from genome-banks it is clear that
the cases and controls have not been matched by sex. Indeed, there is quite
a female-bias in the case cohort owing to the greater prevalence of MS in
females than males. After quality control (QC) procedures there remain R =
1618 cases (407 with primary-progressive MS, 1211 with relapsing-remitting
MS) and S = 3413 controls. Of the cases, Rm = 445 are male and Rf = 1173
are female, giving an approximate 2.64 : 1 female-to-male ratio in the case
cohort. There is a 1.27 : 1 female-to-male ratio of primary progressive MS
cases and a 3.55 : 1 female-to-male ratio of relapsing remitting MS cases in
the discovery phase of the GWAS. Of the controls, Sm = 1478 are female
and Sf = 1935 are female, giving an approximate 1.31 : 1 female-to-male
ratio in the control cohort. There is a significant difference between the

1NB: this estimate likely suffers from a female sampling-bias but is still reflective of
the true increased prevalence of RRMS in females.
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proportion of samples that are female in the case and control cohorts (two
sample proportion test, p ≤ 2.2× 10−16).

Unlike in the simulation, when using real data there is the possibility of
a sample being assigned a “no-call” (NC) at a SNP. That is, we will not have
genotypes for every sample at every SNP in the analysis. We simply ignore
these NCs for the time being and so the test of association at each SNP will
not necessarily use all N = R+S = 5031 samples. The “missingness” rate at
a SNP is defined as the number of samples a NC divided by the total number
of samples. This missingness rate is significantly higher in the X chromosome
data than in the autosomal data for the ANZgene study (mean missingness
rate for X chromosome = 0.0016, mean missingness rate for autosomes =
0.0012, Welch t-test of the hypothesis that the mean missingness rate is
higher for the X chromosome data than for the autosomal data: p < 2.2 ×
10−16)

We have seen in figure 4.1 that the minor allele frequencies (MAFs) of
the X chromosome SNPs used in the analysis of the ANZgene data are non-
uniformly distributed on the interval [0.01, 0.5]. The lower bound of this
interval is 0.01 as all SNPs with a lower MAF are excluded from analysis
during QC. The genotyping data for SNPs with a low MAF (≤ 0.01 is a
common threshold) tend to be of a poorer quality and the analytical tools
are not as accurate for these SNPs. Note that this is not the only reason for
why a SNP may fail QC and be excluded from the final analysis.

The X chromosome analysis is conducted on a set of 7359 SNPs that
passed QC out of a possible 12917 SNPs genotyped by the Illumina Hap370CNV
array. The Hap370CNV array contains 361 probes in the pseudo-autosomal
regions of the X chromosome but none of these passed QC in the ANZgene
study, thus there is no need for a separate analysis of the PAR probes.

Like the methods for association testing on the X chromosome, the QC
procedures for X chromosome data are not as refined as for their autoso-
mal counterparts. It is therefore likely that more X chromosome SNPs than
necessary are excluded from the final analysis due to “failure” in QC. Re-
finement of the quality-control procedures for X chromosome data would
also likely lead to an increase in power to detect genotype/phenotype asso-
ciations.

The original analysis of the ANZgene data used PLINK v1.02 (Purcell
et al., 2007) to implement the additive version of the Cochran-Armitage
trend test. This of course means that only the female samples were used in
the original analysis of the X chromosome ANZgene data (see section 3.6.1).
We will discuss the results of the X chromosome analysis that featured in
the original paper once I have presented my own analysis, to compare the
two analyses.
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Other MS GWA studies

Prior to the ANZgene study there had been one other GWAS of multiple scle-
rosis, published by the International Multiple Sclerosis Genetics Consortium
(IMSGC) (2007). The IMSGC study used quite a different experimental de-
sign to the ANZgene study, indeed quite different to most GWA studies.
The samples in the IMSGC came from 931 family trios, consisting of an
affected child and both parents. Many of the the findings in the IMSGC
study were validated by the ANZgene study.

5.2 Analysis of the ANZgene X chromosome data

To decide which is the best test statistic to analyse the X chromosome data
from the ANZgene study, I ran my simulation code with the parameters
chosen to reflect the experimental design of the ANZgene study. These
parameters are summarised in table 5.1.

Parameter Value
NR 1618
NS 3413

Proportion of cases female 1173/1618
Proportion of controls female 1935/3413

K 1/1000
Genetic model ADD, DOM, REC

r-value 1.5, 2.5
Minor allele frequency 0.01− 0.5

Table 5.1: Parameters in effect for MS simulation

There are 3 genetic models and 2 r-values giving a total of 6 experi-
mental designs over the range of MAFs. In each experimental design we
simulate 10000 replicates for every minor allele frequency. Note that this is
a female-biased study, particularly in the case cohort, and so according to
the simulations in chapter 4 we expect to have somewhat reduced power to
detect associations.

Type I error rates of tests

Our first step is to estimate the size of each test. As before, this is done by
simulating data under the null hypothesis

(
λf = (1, 1, 1),λm = (1, 1)

)
and

recording the proportion of times each test returns a p-value less than the
nominal level of α = 0.05 for each minor allele frequency. The results are
presented in the box plots of figure 5.1.
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Type 1 error rates of tests
MS simulation
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Figure 5.1: The Type I error rates of all tests are centred around the nominal
level of 0.05 (green line). This gives us confidence that any of these methods
will be appropriate to analyse the MS data.

106



Choice of test for the ANZgene X chromosome data

Since all tests are of the correct size we now examine the empirical power of
each test for each genetic model. Of course we do not know the true genetic
model for MS and so our choice of test will not only depend on the empirical
power but also the robustness of the test to misspecification of the genetic
model.

The simulation results for the ANZgene GWAS are shown in figure 5.2.
In each plot the genetic model is highlighted in orange and the r-value is
highlighted in green. Unlike in the previous simulation plots, the female-
to-male ratios of both cohorts are now fixed. Each row corresponds to an
additive, dominant or recessive model, and each column to an r-value of 1.5
or 2.5.

The simulation results do not highlight a single test statistic as being
most powerful for the analysis of the ANZgene X chromosome data. The
“best” test is quite dependent on the underlying genetic model. Clayton’s
S(2) is the most robust of the tests and so has an advantage over its nearest
competitor, Z2

mfG, since we do not know the true genetic model. There is
little power, regardless of the test, to detect additive or recessive associations
with low r-values.

Having studied these results I have chosen to apply the S(2) test to the
ANZgene X chromosome data. I favour this test owing to the aforementioned
robustness to the underlying genetic model. We can see from figure 5.2 that
we will have the most power to detect a a genotype/phenotype association
at a dominant X locus, as expected.
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ANZgene X chromosome data simulation

MAF

E
m

p
ir

ic
a

l p
o
w

e
r

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

r =  1.5 r =  2.5

ADD DOM REC

r =  1.5 r =  2.5

ADD DOM REC

r =  1.5 r =  2.5

ADD DOM REC

0.0
0.2
0.4
0.6
0.8
1.0

r =  1.5 r =  2.5

ADD DOM REC

0.0
0.2
0.4
0.6
0.8
1.0

r =  1.5 r =  2.5

ADD DOM REC

0.0 0.1 0.2 0.3 0.4 0.5

r =  1.5 r =  2.5

ADD DOM REC

Test Statistics
S((1))

S((2))

ZA
2

ZC
2

CAfemale

χχfemale
2

ZmfA
2

ZmfG
2

Figure 5.2: Recall that each cohort in the ANZgene study is female-biased,
particularly the case cohort. As noted in figure 4.6, the Z2

mfG is the most
powerful test for the additive model with low r-value due to this female
sampling-bias. In fact in this study Z2

mfG slightly outperforms the usually
favoured 1 degree of freedom test, S(1), across all genetic models. The 2
degree of freedom test, S(2), is the best test across the dominant or recessive
models. This again highlights the advantage of S(2) as it does not rely on
the specification of a genetic model like the 1 degree of freedom tests do.
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5.2.1 Results

Almost all the required functions are already written as a part of my simu-
lation study. It is therefore quite a simple process to analyse the real data.
The data is in the form of a large tab-separated text file, known as a pedigree
file, with each row corresponding to a sample.

The data I will use for the analysis has been through all the pre-processing
and quality-control procedures, however there is still one anomaly I must
remove from the data. For reasons that are not entirely clear there are 814
male genotypes that have been called as heterozygous by GenCall (the Il-
lumina proprietary software that produces the discrete genotype calls from
the raw data generated by the SNP chips) and these were not excluded in
the quality control stage. Since this data does include any SNPs from the
pseudo-autosomal regions these are clearly genotyping errors and must be
set to “no-calls“ (i.e. missing) before we can begin the analysis. The only
other processing of the pedigree file that I am required to do is to convert
the genotype calls to the format appropriate for my computer code.

The first six columns of the pedigree file relate to sample identification,
such as sample ID, sample sex and sample phenotype. The remaining 7359
columns are each sample’s genotype for the X chromosome SNPs that passed
QC. An additional map file gives the location of each of these SNPs on the
X chromosome.

The p-values reported in the association tests of a GWAS can be very
small and so the p-values are typically transformed to the − log10 scale.
These transformed p-values can be graphed as a Manhattan plot. A Man-
hattan plot consists of the set of SNPs along the x-axis, ordered by location
in the genome, and for each SNP the transformed p-value, − log10(p), is
plotted on the y-axis. Thus, small p corresponds to large − log10(p) and the
plot looks somewhat like the skyscraper silhouette of a big city, hence its
name.

Figure 5.3 is the Manhattan plot for the ANZgene X chromosome data
when analysed with Clayton’s S(2) statistic. The dashed-line in orange cor-
responds to the consensus Type I error rate of α = 10−8(NB: the original
analysis used a slightly larger Type I error rate of α = 5× 10−7). Further-
more, the ANZgene study prioritised SNPs for the replication phase if they
ranked in the top 500 SNPs by significance. This “replication threshold”
for the top 500 SNPs was p < 9.2× 10−4 and so we also include this line in
green on the plot as well.
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Manhattan plot of results for ANZgene X chr data using S((2))

Location of SNP on X chromosome (bp)
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Figure 5.3: We see that no SNP achieves genome-wide significance (orange
line). However, there are eleven SNPs with p-values less than the replication
threshold of 9.2× 10−4 (i.e. points above the green line) which would place
these SNPs in the top 500 of the original ANZgene study. Not all these 11
SNPs are distinguishable in the plot as several lie very close to one another
on X chromosome. One standout SNP (coloured in red) has p ≈ 3 × 10−7

and will be discussed further.
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The SNP highlighted in red in figure 5.3 has a strong association with
case/control status. This SNP has a low minor allele frequency (MAF =
0.03) which may be causing a spurious association. We need to return to the
raw genotyping data for this SNP to check the genotyping quality as well
as examine the results for SNPs in linkage disequilibrium with this SNP
and look at haplotypes containing this SNP to confirm whether this is a
true positive. A further 10 SNPs with p-values less than the replication
threshold also warrant further investigation, however we do not go into the
details of this here.

The original analysis of the X chromosome data from the ANZgene study
discovered 4 SNPs with p-values less than the replication threshold. Recall
that this analysis was performed with the additive version of the Cochran-
Armitage trend test using only the female samples. We have seen from
simulations that we have greater power to detect true associations when we
include the male samples in the testing procedure. This is reflected in the
11 putatively associated SNPs we have discovered using the S(2) statistic as
opposed to the original 4 associated SNPs identified using PLINK’s female-
only test. Interestingly, these 4 “significant” X chromosome SNPs from the
original analysis are no longer significant when we apply Clayton’s S(2) test.

A quantile-quantile plot (q-q plot) is a nice way to visualise the in-
crease in power when using the S(2), as opposed to PLINK’s female-only
Cochran-Armitage trend test, to analyse the ANZgene X chromosome data.
In figure 5.4 are the qq-plots of the − log10(p-values) for the two statistics
overlaid on a common figure.

Under the null hypothesis we would expect the p-values to be uniformly
distributed on the set U = { 1

n , . . . ,
n
n}, where n = 7359 is the number of

X chromosome SNPs in the analysis. This null distribution is represented
in figure 5.4 on the − log10 scale by the line y = x. In this figure, points
above the y = x line correspond to observed p-values that are smaller than
we would expect by chance.
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Comparitive of analyses for ANZgene X chromosome data
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Test Statistics
S((2)) PLINK's CA test●

Figure 5.4: This q-q plot is indicative of the higher power we have to detect
associations when using the S(2) test as opposed to PLINK’s female-only
test. We see that the smallest observed p-values of the S(2) statistic lie
well above the line y = x, representing the expected p-values under the
null distribution. This means that we would not expect these observed
values by chance alone, and so suspect these results to be underlying true
associations. In contrast, the smallest observed p-values of the Cochran-
Armitage statistic in fact lie below the y = x line. This means that even the
smallest observed p-values from PLINK’s test are not more extreme than
what we would expect by chance, and so we suspect these results of being
false positives.
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Discussion

The computer program written for the simulation study, and the results of
chapter 4, have helped us to select the best test to analyse the ANZgene
X chromosome data. The chosen test, S(2), has identified 11 SNPs with p-
values that, under the conditions of the original study, would have promoted
these SNPs to the replication phase of the GWAS.

The results for these 11 SNPs will be studied in greater detail to deter-
mine their appropriateness for follow-up biological studies, but this work is
beyond the scope of my thesis. For now, we note that 3 of these 11 SNPs were
also identified as having p-values less than the replication threshold when
the data was analysed with the Z2

mfG statistic (results not shown). We have
seen from the simulations of section 5.2 that the Z2

mfG test is typically less
powerful than the S(2) test for this data, and so this gives us confidence that
these 3 associations in particular are worthy of further study.

We saw in chapter 4 that by discarding male samples we are losing con-
siderable power to identify risk-associated X chromosome loci. The results of
the case study reiterate this point — by discarding males from the analysis
we may well be missing out on identifying X chromosome loci of interest.
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Chapter 6

Discussion

Genome-wide association studies have improved our understanding of many
complex diseases such as type 1 and type 2 diabetes, inflammatory bowel
disease, prostate cancer and breast cancer (McCarthy et al., 2008). These
studies require the investment of substantial time, effort and money — each
SNP chip costs approximately $350 and then there are the associated costs of
subject recruitment, sample collection and analysis. We would like to extract
as much information as possible from this precious data. It is therefore
surprising that the considerable amount of data from the X chromosome is
often analysed in an ad-hoc and less than ideal manner.

It frequently occurs that separate, “rival” GWA studies of the same dis-
ease are running concurrently and so the pressure to publish first is high.
As a result of this competitiveness, most studies aim to identify an excit-
ing result quickly (which will normally be located on the autosomes — the
so-called “low hanging fruit”) and to publish their result. The more subtle
associations, located in regions that are harder to analyse such as the X
chromosome, are pushed aside for later analysis which often never happens.
An example of this neglect can be seen in Klein et al. (2005) who only anal-
ysed the autosomal regions, despite having genotyped 2334 X chromosome
SNPs1.

This neglect is self-perpetuating with “the problem of testing for genotype-
phenotype association loci on the X chromosome . . . receiving surprisingly
little attention” (Clayton, 2008). That is to say, research has not always
made use of X chromosome data and so there is little development in the
methodology for such an analysis, while simultaneously because there is lit-
tle developed methodology, research continues to not make full use of X
chromosome data.

The challenges of X chromosome association testing are due to the many
biological features and processes that make the X chromosome unique in

1Klein et al. identified a SNP on chromosome 1 that is highly associated with age-
related macular degeneration (odds ratio = 7.4)
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the human genome. The autosomes, which make up 22 of the 24 human
chromosomes, can all be analysed in the same manner regardless of whether
the sample is male or female. The intricacies of the X chromosome also
make it challenging to construct statistical models that are interpretable
and meaningful in a biological context.

Despite these challenges I have shown in my thesis that we can do consid-
erably better than many of the current widely-used methods. In particular
we have seen that the discarding of male samples (à la PLINK) is a wasteful
strategy that leads to a large drop in power to detect genotype/phenotype
associations. In fact, the higher the proportion of cases that are male the
more power we will have. The loss in power for using female-only tests will
be particularly evident for male-biased diseases such as autism, but is still
noticeable even in a female-biased disease such as multiple sclerosis.

We have shown via the simulation study of chapter 4 that the methods
proposed in Clayton (2008) are amongst the best for X chromosome analysis.
My results supplement Clayton’s work as I am not aware of any published
data that has compared Clayton’s proposed test statistics with others that
are in wide-spread use. The results of the simulation study also allow us to
estimate the power we have to detect X chromosome associations under a
wide variety of experimental designs and genetic models, as well as estimate
the Type I error rates of each test. We have seen that for strongly sex-biased
case cohorts that the S(2) test is conservative, i.e. the χ2 distribution on 2
degrees of freedom is not as good an approximation for these cohorts. If the
user is overly worried by this then an alternative evaluation procedure such
as permutation testing could be applied.

All the testing methods considered here rely on large sample approxi-
mations, and this is standard practice for GWA studies. For the most part
these approximations will be good, but there are certainly situations when
so-called exact methods would be an improvement. There is a large amount
of literature on exact-methods for contingency tables (see Agresti, 1992, for a
comprehensive review) yet these methods have not taken hold in GWA stud-
ies. This is likely to be because these methods are both computationally and
theoretically more demanding, particularly when compared to something as
simple as Pearson’s χ2 test. Nevertheless, there may well be benefits to us-
ing these exact-methods and I would expect these to become more popular
as computational power increases. One possible approach would be to apply
the approximate methods when the data is known to satisfy the χ2 approx-
imation (typically for SNPs with a MAF ≥ 0.05), and to apply exact-tests
for the situations where the approximate methods are known to perform
poorly (e.g. for SNPs with a MAF ≤ 0.05).

A somewhat simpler addition to the testing procedure would be the de-
velopment of a MAX test (Podgot et al., 1996; Freidlin et al., 2002) for X
chromosome data. A MAX test takes the most significant test at each SNP
(e.g. the maximum value of the additive test statistic, the dominant test
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statistic and the recessive test statistic) and then adjusts the p-value for the
multiple models tested. This method is rapidly gaining favour for autoso-
mal association testing but, like most GWAS techniques, an equivalent X
chromosome procedure lags behind.

Further instances where the X chromosome “lags” behind the autosomes
are in the quality control procedures and genotype calling. We saw for
the ANZgene data that the missingness rate for the X chromosome was
significantly higher than for the autosomes (p < 2.2× 10−16) and only 57%
of X chromosome SNPs passed QC. Development of more specific quality
control and genotyping procedures for X chromosome data will lead to an
immediate increase in power since we will have a greater number of higher
quality observations.

Somewhat surprisingly the simulation results have shown us that the
power to detect associations is not greatly affected by whether a common
50 : 50 control cohort is used or whether the case and control numbers are
matched by sex. This further validates genome-bank control cohorts as a
viable alternative to the costly process of genotyping thousands of control
samples. This allows researchers to focus their attention on obtaining as
many case samples as possible which will increase the power of the study.

Chapters 4 and 5 highlight the benefits of using a simulation study to
choose the most powerful test statistic to analyse real data. By using the
simulation program we were able to conclude that Clayton’s S(2) statistic
was the best choice of test for analysing the X chromosome data from the
ANZgene multiple sclerosis GWAS. The subsequent analysis identified 11
SNPs that in the original study would have appeared in the top 500 associ-
ated SNPs and thus been prioritised for the replication phase of the study.
These 11 SNPs will now be studied in further detail to determine their ap-
propriateness for follow-up biological studies to investigate their role, if any,
in multiple sclerosis.

A further analysis of the ANZgene data will be to try to identify loci asso-
ciated with the severity of MS. The ANZgene data contains both primary-
progressive MS and relapsing-remitting MS cases, and given the different
sex-ratios between the two forms (see section 5.1) the X chromosome is
again an obvious candidate region for SNPs that influence the severity of
the disease.

There are a number of possible extensions to my work aside from those
discussed in section 4.4.1 of the simulation study. The most challenging
extension is to develop both simulation and analytical methods that more
accurately reflect the complex biological processes of the X chromosome.
The current standard assumptions, such as homogeneity of the X chromo-
some inactivation process, are likely to be overly simplistic. There are also
further biological intricacies of the X chromosome that are not addressed by
the current analysis methods, such as imprinted genes (imprinted genes are
not inherited in the classical Mendelian manner).
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Current autosomal GWAS analyses typically also do not incorporate
any existing biological knowledge but for the X chromosome this type of
information is likely to make a much larger difference in the power of certain
statistics. Individualised tests that make use of existing knowledge of the
biology underlying each X chromosome SNP would be the most powerful
approach, but such an approach is very difficult and some time away from
being implemented.

All the methods considered here are single SNP analyses. One could also
consider haplotype tests and multi-locus methods to investigate interactions
between loci, though these are obviously more challenging than single marker
analyses.

In this thesis we have considered many of the challenges of GWA studies,
in particular those provided by the X chromosome. This work contains a
number of results that show that we can do better than we currently are
when it comes to X chromosome association testing. Furthermore, we have
given several specific implementations of these improvements and shown in a
simulation study that these significantly increase our power to detect geno-
type/phenotype associations. By applying these methods to real X chromo-
some data from the ANZgene multiple sclerosis GWAS we have identified
11 additional association signals that merit follow-up, above what had been
previously identified.
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Appendix A

Appendix

Remark A.1. The allele based test, X2
A, is simply the Pearson’s χ2 test,

X2, of the 2× 2 allele table.

Proof. We use the special form of X2 for 2× 2 tables,

X2 =
n(ad− bc)2

(a+ b)(c+ d)(a+ c)(b+ d)
.

For the allele table

n = 2N,
a = 2r0 + r1,

b = 2r2 + r1,

c = 2s0 + s1,

d = 2s2 + s1,

and

a+ b = 2R,
c+ d = 2S,
a+ c = 2n0 + n1,

b+ d = 2n2 + n1

giving

X2 =
2N
[
(2r0 + r1)(2s2 + s1)− (2s0 + s1)(2r2 + r1)

]2

2R · 2S · (2n0 + n1) · (2n2 + n1)
. (A.1)

Now

(2n0 + n1)(2n2 + n1) =
(
2N − [2n2 + n1]

)(
2n2 + n1

)
= 2N(2n2 + n1)− (2n2 + n1)2 (A.2)
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and similarly the term[
(2r0 + r1)(2s2 + s1)− (2s0 + s1)(2r2 + r1)

]2

can be rewritten as

=
[(

2R− {2r2 + r1}
)(

2s2 + s1

)
−
(
2S − {2s2 + s1}

)(
2r2 + r1

)]2

=
[
2R(2s2 + s1)− (2r2 + r1)(2s2 + 2s1)− 2S(2r2 + r1) + (2s2 + s1)(2r2 + r1)

]2

=
[
2R(2s2 + s1)− 2S(2r2 + r1)

]2

=
[
2R
(
2n2 + n1 − {2r2 + r2}

)
− 2S

(
2r2 + r1

)]2

=
(

2r2 + r1)(−2R− 2S) + 2R(2n2 + n1)
]2

=
[
− 2N(2r2 + r1) + 2R(2n2 + n1)

]2

=
[
2N(2r2 + r1)− 2R(2n2 + n1)

]2
(A.3)

Substituting (A.2) and (A.3) into (A.1) gives

X2 =
2N{2N(r1 + 2r2)− 2R(n1 + 2n2)}2

(2R)2(N −R){2N(n1 + 2n2)− (n1 + 2n2)2}
= X2

A.

Thus the ABT, X2
A, has an approximate χ2 distribution on 1 degree of

freedom.

Remark A.2. Under Zheng et al.’s simulation methodology the distribution
of male genotypes depends on the genetic model through the female heterozy-
gous relative risk, λ1.

Proof. Table A.1 recalls the X chromosome genotypic relative risks (GRRs)
for males and females under the additive, dominant, and recessive genetic
models. We see that the only difference between the GRRs for each genetic
model is the value of λ1. Therefore, for fixed r, the specification of a λ1 is
equivalent to the specification of the genetic model.

The female genotype probabilities are defined by

p(f) =

(
f

(f)
0 g

(f)
0∑2

i=0 f
(f)
i g

(f)
i

,
f

(f)
1 g

(f)
1∑2

i=0 f
(f)
i g

(f)
i

,
f

(f)
2 g

(f)
2∑2

i=0 f
(f)
i g

(f)
i

)
(A.4)

q(f) =

(
(1− f (f)

0 )g(f)
0∑2

i=0(1− f (f)
i )g(f)

i

,
(1− f (f)

1 )g(f)
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i=0(1− f (f)
i )g(f)

i

,
(1− f (f)

2 )g(f)
2∑2

i=0(1− f (f)
i )g(f)

i

)
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Model λf = (λ0, λ1, λ2) λm = (λ0, λ2)
Dominant (1, r, r) (1, r)
Recessive (1, 1, r) (1, r)
Additive (1, r+1

2 , r) (1, r)

Table A.1: Genotypic relative risks for the X chromosome in females and
males under the three classical genetic models.

with

f
(f)
0 =

K

g
(f)
2 λ2 + g

(f)
1 λ1 + g

(f)
0

,

f
(f)
1 = f

(f)
0 λ1, (A.5)

f
(f)
2 = f

(f)
0 λ2.

From (A.4) we see that the female heterozygous genotype probabilities, p(f)
1

and q
(f)
1 , depend on λ1 through the definition of f (f)

1 in (A.5).
Under Zheng et al.’s simulation methodology the male genotype proba-

bilities are then defined relative to the female genotype probabilities by

p(m) =
(
p

(f)
0 +

p
(f)
1

2
, p

(f)
2 +

p
(f)
1

2

)
q(m) =

(
q

(f)
0 +

q
(f)
1

2
, q

(f)
2 +

q
(f)
1

2

)
.

The male genotype probabilities depend on the female heterozygous geno-
type probabilities, i.e. the male genotype probabilities depend on λ1. Since
the specification of λ1 is equivalent to the specification of the genetic model
this explains why the distribution of male genotypes depends on the genetic
model in Zheng et al.’s simulation.
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